Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-06-30
Page range: 276–284
Abstract views: 423
PDF downloaded: 428

Another strange holometabolan larva from Kachin amber—the enigma of the beak larva (Neuropteriformia)

Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Myanmar amber Burmese amber Cretaceous Holometabola Neuropteriformia

Abstract

Holometabolan larvae are dominating components of modern terrestrial and freshwater ecosystems and have a significant ecological impact. Also in past ecosystems, various types of such larvae have been present, which is especially well known from ambers from all over the world. During the Cretaceous, holometabolan larvae with a very modern appearance co-occur with those of morphologies totally unknown in the ecosystems of today. One of these morphologies only known from ca. 100-million-year-old Kachin amber from Myanmar is represented by the so-called “beak larvae”, which possess an anteriorly projecting beak-like mouth cone, previously being described from two specimens. We describe here a third specimen as a new species, ?Partisaniferus edjarzembowskii sp. nov. This new species differs from the previously described beak larva species Partisaniferus atrickmuelleri in the shape of the trunk end as well as in lacking a differentiation of the tergites into distinct sclerites and in the absence of abdomen protrusions. We discuss possible aspects of the ontogeny of the beak larvae, including the possibility that the here described specimen and one of the previously known ones are different larval stages of ?P. edjarzembowskii sp. nov. Furthermore, we discuss possible relationships of beak larvae within Neuropteriformia.

References

  1. Álvarez-Parra, S., Pérez-de la Fuente, R., Peñalver, E., Barrón, E., Alcalá, L., Pérez-Cano, J., Martín-Closas, C., Trabelsi, K., Meléndez, N., López Del Valle, R., Lozano, R.P., Peris, D., Rodrigo, A., Sarto i Monteys, V., Bueno-Cebollada, C.A., Menor-Salván, C., Philippe, M., Sánchez-García, A., Peña-Kairath, C., Arillo, A., Espílez, E., Mampel, L. & Delclós, X. (2021) Dinosaur bonebed amber from an original swamp forest soil. eLife, 10, e72477. https://doi.org/10.7554/eLife.72477
  2. Aspöck, U. & Aspöck, H. (2007) Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia, 20, Kataloge des Oberösterreichischen Landesmuseums (Neue Serie), 66, 451–516.
  3. Badano, D., Engel, M.S., Basso, A., Wang B. & Cerretti P. (2018) Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 9, 3257. https://doi.org/10.1038/s41467-018-05484-y
  4. Badano, D., Fratini, M., Maugeri, L., Palermo, F., Pieroni, N., Cedola, A., Haug, J.T., Weiterschan, T., Velten, J., Mei, M., Di Giulio, A. & Cerretti, P. (2021) X-ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 46, 672–684. https://doi.org/10.1111/syen.12482
  5. Baranov, V., Haug, C., Fowler, M., Kaulfuss, U., Müller, P. & Haug, J.T. (2022) Summary of the fossil record of megalopteran and megalopteran-like larvae, with a report of new specimens. Bulletin of Geosciences, 97, 89–108. https://doi.org/10.3140/bull.geosci.1840
  6. Baranov, V.A., Wang, Y., Gašparič, R., Wedmann, S. & Haug, J.T. (2020) Eco-morphological diversity of larvae of soldier flies and their closest relatives in deep time. PeerJ, 8, e10356. https://doi.org/10.7717/peerj.10356
  7. Batelka, J. & Engel, M.S. (2022) The ̒first fossil tumbling flower beetle’ larva is a symphytan (Hymenoptera). Acta Entomologica Musei Nationalis Pragae, 62, 57–59. https://doi.org/10.37520/aemnp.2022.005
  8. Batelka, J., Engel, M.S. & Prokop, J. (2021) The complete life cycle of a Cretaceous beetle parasitoid. Current Biology, 31, R101–R119. https://doi.org/10.1016/j.cub.2020.12.007
  9. Batelka, J., Prokop, J., Pohl, H., Bai, M., Zhang, W. & Beutel, R.G. (2019) Highly specialized Cretaceous beetle parasitoids (Ripiphoridae) identified with optimized visualization of microstructures. Systematic Entomology, 44, 396–407. https://doi.org/10.1111/syen.12331
  10. Beutel, R.G., Zhang, W.W., Pohl, H., Wappler, T. & Bai, M. (2016) A miniaturized beetle larva in Cretaceous Burmese amber: reinterpretation of a fossil “strepsipteran triungulin”. Insect Systematics & Evolution, 47, 83–91. https://doi.org/10.1163/1876312X-46052134
  11. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  12. Fischer, T.C. (2021) In search for the unlikely: Leaf-mining caterpillars (Gracillariidae, Lepidoptera) from Upper Cretaceous and Eocene ambers. Zitteliana, 95, 135–145. https://doi.org/10.3897/zitteliana.95.63317
  13. Gauweiler, J., Haug, C., Müller, P. & Haug, J.T. (2022) Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity, 15, 45–59. https://doi.org/10.18476/pale.v15.a3
  14. Gepp, J. (1984) Erforschungsstand der Neuropteren-Larven der Erde (mit einem Schlüssel zur Larvaldiagnose der Familien, einer Ü̈bersicht von 340 beschreibenen Larven und 600 Literaturzitaten). In: Gepp, J., Aspöck, H. & Hölzel, H. (Eds), Progress in worldʼs neuropterology. Proceedings of the 1st International Symposium on Neuropterology, 22–26 September 1980, Graz, Austria. Privately printed, Graz, pp. 183–239.
  15. Grimaldi, D. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, Cambridge, 755 pp.
  16. Grimaldi, D.A., Engel, M.S. & Nascimbene, P.C. (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361, 1–71. https://doi.org/10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2
  17. Grimaldi, D., Kathirithamby, J. & Schawaroch, V. (2005) Strepsiptera and triungula in Cretaceous amber. Insect Systematics & Evolution, 36, 1–20. https://doi.org/10.1163/187631205788912787
  18. Gustafson, G.T., Michat, M.C. & Balke, M. (2020) Burmese amber reveals a new stem lineage of whirligig beetle (Coleoptera: Gyrinidae) based on the larval stage. Zoological Journal of the Linnean Society, 189, 1232–1248. https://doi.org/10.1093/zoolinnean/zlz161
  19. Haug, C., Herrera-Flórez, A. F., Müller, P. & Haug, J. T. (2019a) Cretaceous chimera—an unusual 100-million-year old neuropteran larva from the “experimental phase” of insect evolution. Palaeodiversity, 12, 1–11. https://doi.org/10.18476/pale.v12.a1
  20. Haug, C., Haug, G.T., Zippel, A., van der Wal, S. & Haug, J.T. (2021e) The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber. Palaeoentomology, 4 (4), 390–404. https://doi.org/10.11646/palaeoentomology.4.4.14
  21. Haug, G.T., Baranov, V., Wizen, G., Pazinato, P.G., Müller, P., Haug, C. & Haug, J.T. (2021a) The morphological diversity of long-necked lacewing larvae (Neuroptera: Myrmeleontiformia). Bulletin of Geosciences, 96, 431–457. https://doi.org/10.3140/bull.geosci.1807
  22. Haug, J.T. (2020a) Metamorphosis in crustaceans. In: Anger, K., Harzsch, S. & Thiel, M. (Eds), Developmental biology and larval ecology. Vol. 7. The natural history of the Crustacea. Oxford University Press, Oxford, pp. 254–283. https://doi.org/10.1093/oso/9780190648954.003.0009
  23. Haug, J.T. (2020b) Why the term “larva” is ambiguous, or what makes a larva? Acta Zoologica, 101, 167–188. https://doi.org/10.1111/azo.12283
  24. Haug, G.T., Haug, C. & Haug J.T. (2021b) The morphological diversity of spoon-winged lacewing larvae and the first possible fossils from 99 million-year-old Kachin amber, Myanmar. Palaeodiversity, 14, 133–152. https://doi.org/10.18476/pale.v14.a6
  25. Haug, G.T., Haug, C., Pazinato, P.G., Braig, F., Perrichot, V., Gröhn, C., Müller, P. & Haug, J.T. (2020a) The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica, 23, a39. https://doi.org/10.26879/1029
  26. Haug, G.T., Haug, C., van der Wal, S., Müller, P. & Haug, J.T. (2022a) Split-footed lacewings declined over time: indications from the morphological diversity of their antlion-like larvae. Paläontologische Zeitschrift, 96, 29–50. https://doi.org/10.1007/s12542-021-00550-1
  27. Haug, J.T., Baranov, V., Müller, P. & Haug, C. (2021c) New extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Scientific Reports, 11, 20432. https://doi.org/10.1038/s41598-021-99480-w
  28. Haug, J.T., Baranov, V., Schädel, M., Müller, P., Gröhn, P. & Haug, C. (2020b) Challenges for understanding lacewings: how to deal with the incomplete data from extant and fossil larvae of Nevrorthidae? (Neuroptera). Fragmenta Entomologica, 52, 137–167. https://doi.org/10.13133/2284-4880/472
  29. Haug, J.T., Engel, M.S., Mendes dos Santos, P., Haug, G.T., Müller, P. & Haug, C. (early view) Declining morphological diversity in snakefly larvae during last 100 million years. Paläontologische Zeitschrift. https://doi.org/10.1007/s12542-022-00609-7
  30. Haug, J.T. & Haug, C. (2021) A 100 million-year-old armoured caterpillar supports the early diversification of moths and butterflies. Gondwana Research, 93, 101–105. https://doi.org/10.1016/j.gr.2021.01.009
  31. Haug, J.T., Haug, G.T., Zippel, A., van der Wal, S., Müller, P., Gröhn, C., Wunderlich, J., Hoffeins, C., Hoffeins, H.-W. & Haug, C. (2021d) Changes in the morphological diversity of larvae of lance lacewings, mantis lacewings and their closer relatives over 100 million years. Insects, 12, 860. https://doi.org/10.3390/insects12100860
  32. Haug, J.T., Müller, P. & Haug, C. (2018) The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters, 4, 31. https://doi.org/10.1186/s40851-018-0116-9
  33. Haug, J.T., Müller, P. & Haug, C. (2019b) A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters, 5, 29. https://doi.org/10.1186/s40851-019-0144-0
  34. Haug, J.T., Müller, P. & Haug, C. (2019c) A 100-million-year old slim insectan predator with massive venom-injecting stylets - a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences, 94, 431–440. https://doi.org/10.3140/bull.geosci.1753
  35. Haug, J.T., Müller, P. & Haug, C. (2020d) A 100 million-year-old snake-fly larva with an unusually large antenna. Bulletin of Geosciences, 95, 167–177. https://doi.org/10.3140/bull.geosci.1757
  36. Haug, J.T., Pazinato, P.G., Haug, G.T. & Haug, C. (2020c) Yet another unusual new type of lacewing larva preserved in 100-million-year old amber from Myanmar. Rivista Italiana di Paleontologia e Stratigrafia, 126, 821–832. https://doi.org/10.13130/2039-4942/14439
  37. Haug, J.T., Schädel, M., Baranov, V. A. & Haug, C. (2020e) An unusual 100-million-year old holometabolan larva with a piercing mouth cone. PeerJ, 8, e8661. https://doi.org/10.7717/peerj.8661
  38. Haug, J.T., van der Wal, S., Gröhn, C., Hoffeins, C., Hoffeins, H.-W. & Haug, C. (2022b) Diversity and fossil record of larvae of three groups of lacewings with unusual ecology and functional morphology: Ithonidae, Coniopterygidae and Sisyridae. Palaeontologia Electronica, 25, a14. https://doi.org/10.26879/1212
  39. Haug, J.T., Zippel, A., Haug, G.T., Hoffeins, C., Hoffeins, H.-W., Hammel, J.U., Baranov, V. & Haug, C. (2021f) Texas beetle larvae (Brachypsectridae) – the last 100 million years reviewed. Palaeodiversity, 14, 161–183. https://doi.org/10.18476/pale.v14.a8
  40. Khramov, A.V., Bashkuev, A.S. & Lukashevich, E.D. (2020) The fossil record of long-proboscid nectarivorous insects. Entomological Review, 100, 881–968. https://doi.org/10.1134/S0013873820070015
  41. Kirejtshuk, A.G. & Azar, D. (2008) New taxa of beetles (Insecta, Coleoptera) from Lebanese amber with evolutionary and systematic comments. Alavesia, 2, 15–46.
  42. Labandeira, C.C., Yang, Q., Santiago-Blay, J.A., Hotton, C.L., Monteiro, A., Wang, Y.J., Goreva, Y., Shih, C.K., Siljeström, S., Rose, T.R., Dilcher, D.L. & Ren, D. (2016) The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences, 283, 20152893. https://doi.org/10.1098/rspb.2015.2893
  43. Liu, H., Luo, C., Jarzembowski, E.A. & Xiao, C. (2022) Acanthochrysa langae gen. et sp. nov., a new lacewing larva (Neuroptera: Chrysopoidea) from mid-Cretaceous Kachin amber. Cretaceous Research, 133, 105146. https://doi.org/10.1016/j.cretres.2022.105146
  44. Liu, Q., Lu, X., Zhang, Q., Chen, J., Zheng, X., Zhang, W., Liu, X. & Wang, B. (2018a) High niche diversity in Mesozoic pollinating lacewings. Nature Communications, 9, 3793. https://doi.org/10.1038/s41467-018-06120-5
  45. Liu, X., Shi, G., Xia, F., Lu, X., Wang, B. & Engel, M.S. (2018b) Liverwort mimesis in a Cretaceous lacewing larva. Current Biology, 28, 1475–1481. https://doi.org/10.1016/j.cub.2018.03.060
  46. Liu, X., Zhang, W., Winterton, S.L., Breitkreuz, L.C. & Engel, M.S. (2016) Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology, 26, 1590–1594. https://doi.org/10.1016/j.cub.2016.04.039
  47. Liu, Y., Hakim, M. & Huang, D. (2020) First stratiomyomorphan larvae in the mid-Cretaceous amber from Myanmar (Diptera: Brachycera). Cretaceous Research, 106, 104265. https://doi.org/10.1016/j.cretres.2019.104265
  48. MacKay, M.R. (1970) Lepidoptera in Cretaceous amber. Science, 167, 379–380. https://doi.org/10.1126/science.167.3917.379
  49. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E. & Engel, M.S. (2016) A defensive behavior and plant-insect interaction in Early Cretaceous amber–the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Structure and Development, 45, 133–139. https://doi.org/10.1016/j.asd.2015.08.002
  50. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E., Speranza, M., Wierzchos, J., Ascaso, C. & Engel, M.S. (2012) Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences (USA), 109, 21414–21419. https://doi.org/10.1073/pnas.1213775110
  51. Pérez-de la Fuente, R., Engel, M.S., Azar, D. & Peñalver, E. (2019) The hatching mechanism of 130-million-year-old insects: an association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology, 62, 547–559. https://doi.org/10.1111/pala.12414
  52. Pérez-de la Fuente, R., Engel, M.S., Delclòs, X. & Peñalver, E. (2020) Straight-jawed lacewing larvae (Neuroptera) from Lower Cretaceous Spanish amber, with an account on the known amber diversity of neuropterid immatures. Cretaceous Research, 106, 104200. https://doi.org/10.1016/j.cretres.2019.104200
  53. Pérez-de la Fuente, R., Peñalver, E., Azar, D. & Engel, M.S. (2018) A soil-carrying lacewing larva in Early Cretaceous Lebanese amber. Scientific Reports, 8, 16663. https://doi.org/10.1038/s41598-018-34870-1
  54. Perrichot, V. & Engel, M.S. (2007) Early Cretaceous snakefly larvae in amber from Lebanon, Myanmar, and France (Raphidioptera). American Museum Novitates, 3598, 1–11. https://doi.org/10.1206/0003-0082(2007)3598[1:ECSLIA]2.0.CO;2
  55. Pohl, H., Batelka, J., Prokop, J., Müller, P., Yavorskaya, M.I. & Beutel, R.G. (2018) A needle in a haystack: Mesozoic origin of parasitism in Strepsiptera revealed by first definite Cretaceous primary larva (Insecta). PeerJ, 6, e5943. https://doi.org/10.7717/peerj.5943
  56. Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q. & Li, X. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  57. Ślipinśki, S.A. (1991) A monograph of the world Cerylonidae (Coleoptera; Cucujoidea). Part 1: introduction and higher classification. Annali del Museo Civico di Storia Naturale Giacomo Doria, 88, 1–273.
  58. Ślipinśki, A. & Lawrence, J.F. (2010) 10.29. Cerylonidae Billberg, 1820. In: Kükenthal, W., Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F. (Eds), Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Vol. 2. De Gruyter, Berlin, pp. 10–29. https://doi.org/10.1515/9783110911213.422
  59. Tillyard, R.J. (1918) Studies in Australian Neuroptera. No. 7. The life-history of Psychopsis elegans (Gueìrin). Proceedings of the Linnean Society of New South Wales, 43, 787–818.
  60. Tillyard, R.J. (1922) The life-history of the Australian moth-lacewing, Ithone fusca, Newman (Order Neuroptera Planipennia). Bulletin of Entomological Research, 13, 205–223. https://doi.org/10.1017/S000748530002811X
  61. Wang, B., Xia, F., Engel, M.S., Perrichot, V., Shi, G., Zhang, H., Chen, J., Jarzembowski, E.A., Wappler, T. & Rust, J. (2016) Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances, 2, e1501918. https://doi.org/10.1126/sciadv.1501918
  62. Wichard, W. (2017). Family Nevrorthidae (Insecta, Neuroptera) in mid-Cretaceous Burmese amber. Palaeodiversity, 10, 1–5. https://doi.org/10.18476/pale.v10.a1
  63. Xia, F., Yang, G., Zhang, Q., Shi, G. & Wang, B. (2015) Amber: life through time and space. Science Press, Beijing, viii + 197 pp.
  64. Yu, T.T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116, 11345–11350. https://doi.org/10.1073/pnas.1821292116
  65. Zhao, X., Zhao, X., Jarzembowski, E., Tian, Y. & Chen, L. (2020) The first record of brachypsectrid larva from mid-Cretaceous Burmese amber (Coleoptera: Polyphaga). Cretaceous Research, 113, 104493. https://doi.org/10.1016/j.cretres.2020.104493
  66. Zippel, A., Haug, C., Hoffeins, C., Hoffeins, H.-W. & Haug, J.T. (2022a) Expanding the record of larvae of false flower beetles with prominent terminal ends. Rivista Italiana di Paleontologia e Stratigrafia, 128, 81–104. https://doi.org/10.54103/2039-4942/17084
  67. Zippel, A., Haug, C., Müller, P. & Haug, J.T. (2022b) First fossil tumbling flower beetle-type larva from 99 million-year-old amber. Paläontologische Zeitschrift, 96, 219–229. https://doi.org/10.1007/s12542-022-00608-8
  68. Zippel, A., Kiesmüller, C., Haug, G.T., Müller, P., Weiterschan, T., Haug, C., Hörnig, M.K. & Haug, J.T. (2021) Long-headed predators in Cretaceous amber—fossil findings of an unusual type of lacewing larva. Palaeoentomology, 4 (5), 475–498. https://doi.org/10.11646/palaeoentomology.4.5.14