Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-12-23
Page range: 623–630
Abstract views: 373
PDF downloaded: 28

A new species of Protopsyllidioidea from Cretaceous amber

State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; Lebanese University, Faculty of Science II, Natural Sciences Department, Fanar - El-Matn, PO box 26110217, Lebanon
State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Insecta Hemiptera Myanmar mid-Cretaceous

Abstract

With new fossils of Protopsyllidioidea discovered from amber, our knowledge of the biodiversity in the superfamily increases, and so does our understanding of the evolution of suborder Sternorrhyncha and its ‘basal’ groups. The new species Burmapsyllidium grimaldii Hakim, Azar & Huang sp. nov., assigned to the family Paraprotopsyllidiidae, is reported from the mid-Cretaceous Burmese amber, and described and illustrated.

References

  1. Ai, H. (2013) Sensors and sensory processing for airborne vibrations in silk moths and honeybees. Sensors, 13 (7), 9344–9363. https://doi.org/10.3390/s130709344
  2. Amyot, C.J.B. & Audinet-Serville, A. (1843) Histoire naturelle des insectes: Hémiptères. Librairie Encyclopédique de Roret, Paris, 675 pp. https://doi.org/10.5962/bhl.title.8471
  3. Becker-Migdisova, E.E. (1985) Iskopaemye nasekomye psillomorfy [Fossil Psyllomorpha insects]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 206, 1–92. [In Russian]
  4. Carpenter, F.M. (1931) The Lower Permian insects of Kansas. Part 4. The order Hemiptera, and additions to the Paleodictyoptera and Protohymenoptera. American Journal of Science, 22, 113–130. https://doi.org/10.2475/ajs.s5-22.128.113
  5. Cheng, X. & Sun, M. (2018) Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force. Journal of Fluid Mechanics, 855, 646–670. https://doi.org/10.1017/jfm.2018.668
  6. Drohojowska, J. (2015) Thorax morphology and its importance in establishing relationships within Psylloidea (Hemiptera: Sternorrhyncha). Wydawnictwo Uniwersytetu Śląskiego, Katowice, 171 pp.
  7. Drohojowska, J., Szwedo, J. & Azar, D. (2013) Talaya batraba gen. et sp. nov.—the first nymph of a protopsyllidiid (Hemiptera: Sternorrhyncha: Psyllomorpha) from the Lower Cretaceous amber of Lebanon. Acta Geologica Sinica, 87 (l), 21–31. https://doi.org/10.1111/1755-6724.12027
  8. Drohojowska, J., Zmarzły, M. & Szwedo, J. (2022) Evolutionary implications of new Postopsyllidiidae from mid-Cretaceous amber from Myanmar and sternorrhynchan nymphal conservatism. Scientific Reports, 12, 16446. https://doi.org/10.1038/s41598-022-20897-y
  9. Ellington, C.P. (1980) Wing mechanics and take-off preparation of thrips (Thysanoptera). Journal of Experimental Biology, 85, 129–136. https://doi.org/10.1242/jeb.85.1.129
  10. Ellington, C.P. (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 305 (1122), 1–15. https://www.jstor.org/stable/2396072
  11. Ford, M.P., Kasoju, V.T., Gaddam, M.G. & Santhanakrishnan, A. (2019) Aerodynamic effects of varying solid surface area of bristled wings performing clap and fling. Bioinspiration & Biomimetics, 14 (4), 046003. https://doi.org/10.1088/1748-3190/ab1a00
  12. Grimaldi, D.A. (2003) First amber fossils of the extinct family Protopsyllidiidae, and their phylogenetic significance among Hemiptera. Insect Systematics & Evolution, 34 (3), 329–344. https://doi.org/10.1163/187631203788964746
  13. Hakim, M., Azar, D. & Huang, D.Y. (2019a) Protopsyllidioids and their behaviour “frozen” in mid-Cretaceous Burmese amber. Palaeoentomology, 2 (3), 271–278. https://doi.org/10.11646/palaeoentomology.2.3.12
  14. Hakim, M., Azar, D., Szwedo, J., Brysz, A.M. & Huang, D.Y. (2019b) New paraneopterans (Protopsyllidioidea, Hemiptera) from the mid-Cretaceous amber of northern Myanmar. Cretaceous Research, 98, 136–152. https://doi.org/10.1016/j.cretres.2018.12.012
  15. Hakim, M., Azar, D., Szwedo, J., Drohojowska, J. & Huang, D.Y. (2021) Paraprotopsyllidiidae fam. nov., a new thrips-like protopsyllidioid family from mid-Cretaceous Burmese amber (Hemiptera; Sternorrhyncha). Cretaceous Research, 120, 104726. https://doi.org/10.1016/j.cretres.2020.104726
  16. Horridge, G.A. (1956) The flight of very small insects. Nature, 178 (4546), 1334–1335. https://doi.org/10.1038/1781334a0
  17. Huang, D.Y., Hakim, M., Fu, Y.Z. & Nel, A. (2022) A new sternorrhynchan genus and species from the Triassic period of China that is likely related to Protopsyllidioid (Insecta, Hemiptera). Insects, 13 (7), 592. https://doi.org/10.3390/insects13070592
  18. Huber, J.T. & Noyes, J.S. (2013) A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods. Journal of Hymenoptera, 32, 17–44.
  19. Jiang, Y.G., Zhao, P., Cai, X.F., Rong, J.X., Dong, Z.H., Chen, H.W., Wu, P., Hu, H.Y., Jin, X.X., Zhang, D.Y. & Liu, H. (2022). Bristled-wing design of materials, microstructures, and aerodynamics enables flapping flight in tiny wasps. iScience, 25 (1), 103692. https://doi.org/10.1016/j.isci.2021.103692
  20. Jones, S.K., Laurenza, R., Hedrick, T.L., Griffith, B.E & Miller, L.A. (2015) Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. Journal of Theoretical Biology, 384, 105–120. https://doi.org/10.1016/j.jtbi.2015.07.035
  21. Jones, S.K., Yun, Y.J.J., Hedrick, T.L., Griffith, B.E. & Miller, L.A. (2016) Bristles reduce the force required to ‘fling’ wings apart in the smallest insects. Journal of Experimental Biology, 219 (23), 3759–3772. https://doi.org/10.1242/jeb.143362
  22. Kasoju, V.T., Terrill, C.L., Ford, M.P. & Santhanakrishnan, A. (2018) Leaky flow through simplified physical models of bristled wings of tiny insects during clap and fling. Fluids, 3 (2), 44. https://doi.org/10.3390/fluids3020044
  23. Kolomenskiy, D., Farisenkov, S., Engels, T., Lapina, N., Petrov, P., Lehmann, F.-O., Onishi, R., Liu, H. & Polilov, A. (2020) Aerodynamic performance of a bristled wing of a very small insect. Experiments in Fluids, 61 (9), 194. https://doi.org/10.1007/s00348-020-03027-0
  24. Lara, M.B. & Wang, B. (2016) New hemipteran insects (Eoscarterellidae, Scytinopteridae, and Protopsyllidiidae) from the Upper Triassic Potrerillos Formation of Mendoza, Argentina. Paläontologische Zeitschrift, 90, 49–61. https://doi.org/10.1007/s12542-016-0286-8
  25. Lee, S.H., Lee, M. & Kim, D. (2020) Optimal configuration of a two-dimensional bristled wing. Journal of Fluid Mechanics, 888, A23. https://doi.org/10.1017/jfm.2020.64
  26. Linnaeus, C. (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae [= Stockholm], 824 pp. https://doi.org/10.5962/bhl.title.542
  27. Lyu, Y.Z., Zhu, H.J. & Sun, M. (2019) Flapping-mode changes and aerodynamic mechanisms in miniature insects. Physical Review E, 99, 012419. https://doi.org/10.1103/PhysRevE.99.012419
  28. Mao, Y.Y., Liang, K., Su, Y.T., Li, J.G., Rao, X., Zhang, H., Xia, F.Y., Fu, Y.Z., Cai, C.Y. & Huang, D.Y. (2018) Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology, 1 (1), 91–103. https://doi.org/10.11646/palaeoentomology.1.1.11
  29. Nel, A., Prokop, J., Nel, P., Grandcolas, P., Huang, D.Y., Roques, P., Guilbert, E., Dostál, O. & Szwedo, J. (2012) Traits and evolution of wing venation pattern in paraneopteran insects. Journal of Morphology, 273 (5), 480–506. https://doi.org/10.1002/jmor.11036
  30. Ross, A.J. (2019) Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology, 2 (1), 22–84. https://doi.org/10.11646/palaeoentomology.2.1.5
  31. Ross, A.J. (2020) Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2019. Palaeoentomology, 3 (1), 103–118. https://doi.org/10.11646/palaeoentomology.3.1.14
  32. Ross, A.J. (2021) Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2020. Palaeoentomology, 4 (1), 57–76. https://doi.org/10.11646/palaeoentomology.4.1.11
  33. Ross, A.J. (2022) Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2021. Palaeoentomology, 5 (1), 27–45. https://doi.org/10.11646/palaeoentomology.5.1.4
  34. Santhanakrishnan, A., Robinson, A.K., Jones, S., Low, A.A., Gadi, S., Hedrick, T.L. & Miller, L.A. (2014) Clap and fling mechanism with interacting porous wings in tiny insect flight. Journal of Experimental Biology, 217 (21), 3898–3909. https://doi.org/10.1242/jeb.084897
  35. Sato, K., Takahashi, H., Nguyen, M.D., Matsumoto, K. & Shimoyama, I. (2013) Effectiveness of bristled wing of thrips. In: 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp 21–24. https://doi.org/10.1109/MEMSYS.2013.6474166
  36. Shi, G.L., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  37. Sunada, S., Takashima, H., Hattori, T., Yasuda, K. & Kawachi, K. (2002) Fluid-dynamic characteristics of a bristled wing. Journal of Experimental Biology, 205, 2737–2744. https://doi.org/10.1242/jeb.205.17.2737
  38. Szwedo, J., Wang, B., Soszyńska-Maj, A., Azar, D. & Ross, A. (2020) International Palaeoentomological Society Statement. Palaeoentomology, 3 (3), 221–222. https://doi.org/10.11646/palaeoentomology.3.3.1
  39. Valmalette, J.C., Raad, H., Qiu, N., Ohara, S., Capovilla, M. & Robichon, A. (2015) Nanoarchitecture of gustatory chemosensory bristles and trachea in Drosophila wings. Scientific Reports, 5, 14198. https://doi.org/10.1038/srep14198
  40. Wootton, R.J. (1992) Functional morphology of insect wings. Annual Review of Entomology, 37, 113–140. https://doi.org/10.1146/annurev.en.37.010192.000553
  41. Yang, G., Yao, Y.Z. & Ren, D. (2012) A new species of Protopsyllidiidae (Hemiptera, Sternorrhyncha) from the Middle Jurassic of China. Zootaxa, 3274, 36–42. https://doi.org/10.11646/zootaxa.3274.1.4
  42. Yang, G., Yao, Y.Z. & Ren, D. (2013) Poljanka strigosa, a new species of Protopsyllidiidae (Hemiptera, Sternorrhyncha) from the Middle Jurassic of China. Alcheringa, 37 (1), 125–130. https://doi.org/10.1080/03115518.2012.715325
  43. Yavorskaya, M.I., Beutel, R.G., Farisenkov, S.E. & Polilov, A.A. (2019) The locomotor apparatus of one of the smallest beetles—The thoracic skeletomuscular system of Nephanes titan (Coleoptera, Ptiliidae). Arthropod Structure & Development, 48, 71–82. https://doi.org/10.1016/j.asd.2019.01.002
  44. Yin, Z.W., Cai, C.Y. & Huang, D.Y. (2018) New zorapterans (Zoraptera) from Burmese amber suggest higher paleodiversity of the order in tropical forests. Cretaceous Research, 84, 168–172. https://doi.org/10.1016/j.cretres.2017.11.028
  45. Zhao, P., Dong, Z.H., Jiang, Y.G., Liu, H., Hu, H.Y., Zhu, Y.F. & Zhang, D.Y. (2019) Evaluation of drag force of a thrip wing by using a microcantilever. Journal of Applied Physics, 126 (22), 224701. https://doi.org/10.1063/1.5126617