Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-06-29
Page range: 386-394
Abstract views: 96
PDF downloaded: 73

Gomphocopris ashworthi gen. et sp. nov. (Coleoptera, Scarabaeinae, Homocoprini): An additional new Chilean fossil genus and species extinct at the Pleistocene-Holocene boundary

Laboratorio de Salud de Bosques, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, 5090000 Valdivia, Chile; Fundación para los Estudios Patrimoniales Pleistocenos de Osorno, Osorno, Chile
Beaty Centre for Species Discovery, Canadian Museum of Nature, 1740 Chemin Pink, Gatineau, Quebec, J9J 3N7, Canada
Fundación para los Estudios Patrimoniales Pleistocenos de Osorno, Osorno, Chile
Finnish Museum of Natural History (LUO-MUS), University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00014, Finland
Research Institute CIBIO (Centro Iberoamericano de la Biodiversidad) Science Park, University of Alicante, E-03690 Alicante, Spain
Dung beetles Extinction Taxonomy Quaternary insect Palaeoentomology Coleoptera Scarabaeinae Homocoprini

Abstract

Based on male and female fossil beetle remains recorded in the Pilauco deposits (northern Chilean Patagonia), a new and extinct dung beetle genus and species from an upper Pleistocene sequence (16.4 to 12.8 kyr BP) namely, Gomphocopris ashworthi gen. et sp. nov. (Coleoptera, Scarabaeidae, Homocoprini) is described and illustrated. The morphological analysis of these fossil remains suggest that this extinct genus and species are placed into the tribe Homocoprini due to presence of supplementary carina in the lateral area in the pronotum. Moreover, this new taxon is separated from the extant Homocoprini species by the absence hypomeral carina (well developed in all extant species); cephalic horn in males with a distinct posterior projection apically (absent in the extant species), and the unique shapes and disposition of the pronotal lobes in major male and female. We suggest that this dung beetle genus and species became extinct in the late Pleistocene to early Holocene as a consequence of the drastic environmental changes, and the extinction of most of the large mammals, which were the organisms that provided feces for the development of their larvae.

References

  1. Abarzúa, A.M., Martel-Cea, A. & Lobos, V. (2020) Vegetation—climate—megafauna interactions during the Late Glacial in Pilauco site, Northwestern Patagonia. In: Pino, M. & Astorga, G. (Eds), Pilauco: A Late Pleistocene archaeo-paleontological site. Springer, Cham, Switzerland, 157–173. https://doi.org/10.1007/978-3-030-23918-3_9
  2. Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L. & Shabel, A.B. (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science, 306 (5693), 70–75. https://doi.org/10.1126/science.1101476
  3. Beltrame, M.O., Cañal, V., Llano, C. & Barberena, R. (2020) Macroparasites of megamammals: The case of a Pleistocene-Holocene extinct ground sloth from northwestern Patagonia, Argentina. Quaternary International, 568, 36–42. https://doi.org/10.1016/j.quaint.2020.09.030
  4. Brook, B.W. & Barnosky, A.D. (2012) Quaternary extinctions and their link to climate change. In: Hannah, L. (Ed.), Saving a million species. Island Press/Center for Resource Economics, 179–198. https://doi.org/10.5822/978-1-61091-182-5_11
  5. Cassenote, S., Valois, M.C., Maldaner, M.E. & Vaz-de-Mello, F.Z. (2020) Taxonomic revision of Dichotomius (Selenocopris) nisus (Olivier, 1719) and Dichotomius (Selenocopris) superbus (Felsche, 1901). Revista Brasileira de Entomologia, 64 (3), 1–11. https://doi.org/10.1590/1806-9665-rbent-2020-0007
  6. Davis, A.L.V., Scholtz, C., H. & Philips, T.K. (2002) Historical biogeography of scarabaeine dung beetles. Journal of Biogeography, 29 (9), 1217–1256. https://doi.org/10.1046/j.1365-2699.2002.00776.x
  7. Dillehay, T.D., Ocampo, C., Saavedra, J., Pino, M., Scott-Cummings, L., Kovácik, P., Silva, C. & Alvae, R. (2019). New excavations at the late Pleistocene site of Chinchihuapi I, Chile. Quaternary Research, 92 (1), 70–80. https://doi.org/10.1017/qua.2018.145
  8. Génier, F. & Darling, J.D.G. (2024) Revision of the South American genera Andinocopris new genus and Homocopris Burmeister, 1846 (Coleoptera: Scarabaeidae: Scarabaeinae: Homocoprini new tribe). European Journal of Taxonomy, 925, 220–267. https://doi.org/10.5852/ejt.2024.925.2465
  9. Gómez, G.A., García, J.L., Villagrán, C., Lüthgens, C. & Abarzúa, A.M. (2022) Vegetation, glacier, and climate changes before the global last glacial maximum in the Isla Grande de Chiloé, southern Chile (42°S). Quaternary Science Reviews, 276, 107301. https://doi.org/10.1016/j.quascirev.2021.107301
  10. González-Chang, M. & Pinochet, D. (2015) Escarabajos estercoleros nativos en Chile. Una revisión con énfasis en su ecología. Agro Sur, 43 (3), 51–61. https://doi.org/10.4206/agrosur.2015.v43n3-06
  11. Hoganson, J., Ashworth A.C. & Gunderson, M. (1989) Fossil-beetle analysis. In: Dillehay, T. (Ed.), Monte Verde—a Late Pleistocene settlement in Chile. Smithsonian Institution Press, 211–226.
  12. Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S.M., Southon, J., Bayliss, A., Blackwell, P.G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R. & Wacker, L. (2020) SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon, 62 (4), 759–778. https://doi.org/10.1017/RDC.2020.59
  13. Klemperer, H.G. (1983) Brood ball construction by the non-brooding Coprini Sulcophanaeus carnifex and Dichotomius torulosus (Coleoptera, Scarabaeidae). Ecological Entomology, 8, 61–69. https://doi.org/10.1111/j.1365-2311.1983.tb00483.x
  14. Krell, F.-T. (2006) Fossil record and evolution of Scarabaeoidea (Coleoptera: Polyphaga). The Coleopterists Bulletin, 60, 120–143. https://doi.org/10.1649/0010-065X(2006)60[120:FRAEOS]2.0.CO;2
  15. Martel-Cea, J. (2008) Los coleópteros de Pilauco. In: Pino, M. (Ed.), Pilauco: un sitio complejo del Pleistoceno tardío. Osorno—Norpatagonia Chilena. Universidad de Chile, Valdivia, Chile, 55–58
  16. Massaferro, J., Ashworth, A. & Brooks, S. (2008) Quaternary fossil insects from Patagonia. Developments in Quaternary Science, 11, 393–410. https://doi.org/10.1016/S1571-0866(07)10020-8
  17. Mondaca, J. (2023). A checklist of the Scarabaeoidea (Coleoptera) of Chile with exemplar live photographed. Zootaxa, 5285 (2), 201–251. https://doi.org/10.11646/zootaxa.5285.2.1
  18. Montoya-Molina, S. & Vaz-de-Mello, F.Z. (2021) Taxonomic review of the Dichotomius (Luederwaldtinia) agenor species group (Coleoptera: Scarabaeidae: Scarabaeinae). European Journal of Taxonomy, 734 (1), 1–64. https://doi.org/10.5852/ejt.2021.734.1233
  19. Moreno, K., Bostelmann, J.E., Macías, C., Navarro-Harris, X., De Pol-Holz, R. & Pino, M. (2019) A late Pleistocene human footprint from the Pilauco archaeological site, northern Patagonia, Chile. PLoS One, e0213572, 1–16. https://doi.org/10.1371/journal.pone.0213572
  20. Moreno, P.I., Denton, G.H., Moreno, H., Lowell, T.V., Putnam, A.E. & Kaplan, M.R. (2015) Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quaternary Science Reviews, 122, 233–249. https://doi.org/10.1016/j.quascirev.2015.05.027
  21. Moreno, P.I. & León, A.L. (2003) Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. Journal of Quaternary Science, 18 (8), 787–800. https://doi.org/10.1002/jqs.801
  22. Pérez-Balarezo, A., Navarro-Harris, X., Boëda, E. & Pino, M. (2021). Beyond the mighty projectile point: Techno- functional study in a Late Pleistocene artifact, Pilauco Site, Osorno, Northwestern Chilean. Lithic Technology, 47 (2), 83–105. https://doi.org/10.1080/01977261.2021.1958133
  23. Pino, M., Abarzúa, A.M., Astorga, G., Martel-Cea, A., Cossio-Montecinos, N., Navarro, R.X., Paz Lira, M., Labarca, R., LeCompte, M.A., Adedeji, V., Moore, C.R., Bunch, T.E., Mooney, C., Wolbach, W.S., West, A. & Kennett, J.P. (2019) Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports, 9 (1), 1–27. https://doi.org/10.1038/s41598-018-38089-y
  24. Pino. M., Chávez-Hoffmeister, M., Navarro-Harris, X. & Labarca, R. (2013) The late Pleistocene Pilauco site, Osorno, south-central Chile. Quaternary International, 299, 3–12. https://doi.org/10.1016/j.quaint.2012.05.001
  25. Prates, L. & Perez, S.I. (2021) Late Pleistocene South American megafaunal extinctions associated with rise of fishtail points and human population. Nature Communications, 12 (1), 2175. https://doi.org/10.1038/s41467-021-22506-4
  26. Ratcliffe, B.C., Jameson, M.L., Figueroa, L., Cave, R.D., Paulsen, M.J., Cano, E.B., Beza, C., Jiménez-Ferbans, L. & Reyes-Castillo, P. (2015) Beetles (Coleoptera) of Peru: A survey of the families. Scarabaeoidea. Journal of the Kansas Entomological Society, 88 (2), 186–207. https://doi.org/10.2317/kent-88-02-186-207.1
  27. Rossini, M. & Vaz-de-Mello, F.Z. (2020) Taxonomic review of the Dichotomius mamillatus group (Coleoptera: Scarabaeidae), with a description of a new species, Dichotomius (Dichotomius) gandinii sp. nov., from western Amazonia. Austral Entomology, 59 (1), 52–73. https://doi.org/10.1111/aen.12443
  28. Tarasov, S., Vaz-de-Mello, F.Z., Krell, F.-T. & Dimitrov, D. (2016) A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber. PeerJ, 4, e1988. https://doi.org/10.7717/peerj.1988
  29. Tello, F., Elgueta, M., Abarzúa, A.M., Torres, F. & Pino, M. (2017) Fossil beetles from Pilauco, south-central Chile: An Upper Pleistocene paleoenvironmental reconstruction. Quaternary International, 449, 58–66. https://doi.org/10.1016/j.quaint.2017.05.046
  30. Tello. F., Rossini, M., Pino, M. & Verdú, J.R. (2021a) Nuevos registros fósiles de Onthophagus pilauco Tello, Verdú, Rossini y Zunino, 2021 (Coleoptera: Scarabaeidae: Scarabaeinae), revelan un patrón morfológico único entre los Onthophagus americanos. Revista Chilena de Entomología, 47 (4), 935–949. https://doi.org/10.35249/rche.47.4.21.19
  31. Tello, F. & Torres, F. (2020) Fossil Coleoptera from the Pilauco Site: an approach to Late Pleistocene microenvironments. In: Pino, P. & Astorga, G. (Eds), Pilauco: A Late Pleistocene archaeo-paleontological site. Springer, Cham, pp. 195–212. https://doi.org/10.1007/978-3-030-23918-3_12
  32. Tello, F., Verdú, J.R., Rossini, M. & Zunino, M. (2021b) Onthophagus pilauco sp. nov. (Coleoptera, Scarabaeidae): evidence of beetle extinction in the Pleistocene–Holocene transition in Chilean Northern Patagonia. ZooKeys, 1043, 133–145. https://doi.org/10.3897/zookeys.1043.61706
  33. Tello, F., Pino, M., Vaz-de-Mello, F.Z. & Silva, F.A.B. (2023) A new extinct species of Scybalophagus dung beetle supports the collateral extinction hypothesis at the Chilean South American Pleistocene-Holocene boundary. Journal of Quaternary Science, 38 (8), 1313-1320. https://doi.org/10.1002/jqs.3564
  34. Valois, M.C., Vaz-de-Mello, F.Z. & Silva, F.A.B. (2017) Taxonomic revision of the Dichotomius sericeus (Harold, 1867) species group (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa, 4277 (4), 503–530. https://doi.org/10.11646/zootaxa.4277.4.3
  35. Vaz-de-Mello, F. (2010) Reclassification of Homocopris Burmeister as a valid genus to accommodate three species formerly in Dichotomius Hope (Scarabaeidae: Scarabaeinae: Coprini). The Coleopterists Bulletin, 64 (3), 192. https://doi.org/10.1649/0010-065X-64.3.192.3
  36. Villavicencio, N.A., Lindsey, E.L., Martin, F.M., Borrero, L.A., Moreno, P.I., Marshall, C.R. & Barnosky, A.D. (2016) Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography, 39 (2), 125–140. https://doi.org/10.1111/ecog.01606