Skip to main content Skip to main navigation menu Skip to site footer
Type: Comments and perspectives
Published: 2024-04-19
Page range: 176-183
Abstract views: 204
PDF downloaded: 165

Resolving incongruences in insect phylogenomics: A reply to Boudinot et al. (2023)

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ UK
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
Coleoptera phylogenetics compositional heterogeneity model testing systematic bias

Abstract

Over the last two decades, advances in molecular phylogenetics have established a new understanding of beetle phylogeny. However, some historically contentious relationships, particularly among early-diverging beetle clades, remain to be resolved. In a recent paper (Cai et al., 2022), we identified model-dependent signals in beetle phylogeny and showed how the removal of the most compositionally heterogeneous sites, in combination with the use of across-site compositionally heterogeneous models leads to results that are more congruent with the distribution of morphological characters and the beetle fossil record. In their reply, Boudinot et al. (2023) suggested that our analyses are affected by a range of shortcomings, encompassing almost every aspect of our study. Unfortunately, the arguments presented by Boudinot et al. (2023) are based on misinterpretation of the results of statistical tests, as well as misconceptions concerning substitution models, model testing and its role in phylogenomics. Here we clarify these misconceptions and show that the critiques raised by Boudinot et al. (2023) have no merit.

References

  1. Baños, H., Susko, E. & Roger, A.J. (2023) Is over-parameterization a problem for Profile Mixture Models? Systematic Biology, syad063. https://doi.org/10.1093/sysbio/syad063
  2. Bouchard, P., Bousquet, Y. Davies, A. E. & Cai, C.Y. (2024) On the nomenclatural status of type genera in Coleoptera (Insecta). ZooKeys, 1194, 1–981. https://doi.org/10.3897/zookeys.1194.106440
  3. Boudinot, B.E., Fikáček, M., Lieberman, Z.E., Kusy, D., Bocak, L., Mckenna, D.D. & Beutel, R.G. (2023) Systematic bias and the phylogeny of Coleoptera—A response to Cai et al. (2022) following the responses to Cai et al. (2020). Systematic Entomology, 42, 223–232. https://doi.org/10.1111/syen.12570
  4. Cai, C.Y. (2024) Ant backbone phylogeny resolved by modelling compositional heterogeneity among sites in genomic data. Communications Biology, 7 (1), 106. https://doi.org/10.1038/s42003-024-05793-7
  5. Cai, C.Y., Tihelka, E., Giacomelli, M., Lawrence, J.F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M.K., Newton, A.F., Leschen, R.A.B., Gimmel, M.L., Lü, L., Engel, M.S., Bouchard, P., Huang, D., Pisani, D. & Donoghue, P.C.J. (2022) Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9, 211771. https://doi.org/10.1098/rsos.211771
  6. Cai, C.Y., Tihelka, E., Liu, X. Y. & Engel, M. S. (2023) Improved modelling of compositional heterogeneity reconciles phylogenomic conflicts among lacewings. Palaeoentomology, 6 (1), 49–57. https://doi.org/10.11646/palaeoentomology.6.1.8
  7. Criscuolo, A. & Gribaldo, S. (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10, 210. https://doi.org/10.1186/1471-2148-10-210
  8. Crotty, S.M. & Holland, B.R. (2022) Comparing partitioned models to mixture models: Do information criteria apply? Systematic Biology, 71, 1541–1548. https://doi.org/10.1093/sysbio/syac003
  9. Fabreti, L.G. & Höhna, S. (2022) Bayesian inference of phylogeny is robust to substitution model over-parameterization. bioRxiv. https://doi.org/10.1101/2022.02.17.480861
  10. Feuda, R., Dohrmann, M., Pett, W., Philippe, H., Rota-Stabelli, O., Lartillot, N., Wörheide, G. & Pisani, D. (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Current Biology, 27, 3864–3870.e4. https://doi.org/10.1016/j.cub.2017.11.008
  11. Giacomelli, M., Rossi, M.E., Lozano-Fernandez, J., Feuda, R. & Pisani, D. (2022) Resolving tricky nodes in the tree of life through amino acid recoding. iScience, 25, 105594. https://doi.org/10.1016/j.isci.2022.105594
  12. Huelsenbeck, J.P. & Rannala, B. (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904–913. https://doi.org/10.1080/10635150490522629
  13. Kjer, K.M., Simon, C., Yavorskaya, M. & Beutel, R.G. (2016) Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of The Royal Society Interface, 13, 20160363. https://doi.org/10.1098/rsif.2016.0363
  14. Kück, P. & Struck, T.H. (2014) BaCoCa—A heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Molecular Phylogenetics and Evolution, 70, 94–98. https://doi.org/10.1016/j.ympev.2013.09.011
  15. Lemmon, A.R. & Moriarty, E.C. (2004) The importance of proper model assumption in Bayesian phylogenetics. Systematic Biology, 53, 265–277. https://doi.org/10.1080/10635150490423520
  16. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116
  17. McKenna, D.D., Wild, A.L., Kanda, K., Bellamy, C.L., Beutel, R.G., Caterino, M.S., Farnum, C.W., Hawks, D.C., Ivie, M.A., Jameson, M.L., Leschen, R.A.B., Marvaldi, A.E., Mchugh, J.V., Newton, A.F., Robertson, J.A., Thayer, M.K., Whiting, M.F., Lawrence, J.F., Ślipiński, A., Maddison, D.R. & Farrell, B.D. (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40, 835–880. https://doi.org/10.1111/syen.12132
  18. Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., Niehuis, O., Petersen, M., Izquierdo-Carrasco, F., Wappler, T., Rust, J., Aberer, A.J., Aspöck, U., Aspöck, H., Bartel, D., Blanke, A., Berger, S., Böhm, A., Buckley, T.R., Calcott, B., Chen, J., Friedrich, F., Fukui, M., Fujita, M., Greve, C., Grobe, P., Gu, S., Huang, Y., Jermiin, L.S., Kawahara, A.Y., Krogmann, L., Kubiak, M., Lanfear, R., Letsch, H., Li, Yiyuan, Li, Z., Li, J., Lu, H., Machida, R., Mashimo, Y., Kapli, P., McKenna, D.D., Meng, G., Nakagaki, Y., Navarrete-Heredia, J.L., Ott, M., Ou, Y., Pass, G., Podsiadlowski, L., Pohl, H., Reumont, B.M. von, Schütte, K., Sekiya, K., Shimizu, S., Ślipiński, A., Stamatakis, A., Song, W., Su, X., Szucsich, N.U., Tan, M., Tan, X., Tang, M., Tang, J., Timelthaler, G., Tomizuka, S., Trautwein, M., Tong, X., Uchifune, T., Walzl, M.G., Wiegmann, B.M., Wilbrandt, J., Wipfler, B., Wong, T.K.F., Wu, Q., Wu, G., Xie, Y., Yang, S., Yang, Q., Yeates, D.K., Yoshizawa, K., Zhang, Q., Zhang, R., Zhang, W., Zhang, Y., Zhao, J., Zhou, C., Zhou, L., Ziesmann, T., Zou, S., Li, Y., Xu, X., Zhang, Y., Yang, H., Wang, J., Wang, J., Kjer, K.M. & Zhou, X. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767. https://doi.org/10.1126/science.1257570
  19. Parham, J.F., Donoghue, P.C., Bell, C.J., Calway, T.D., Head, J.J., Holroyd, P.A., Inoue, J.G., Irmis, R.B., Joyce, W.G. & Ksepka, D.T. (2011) Best practices for justifying fossil calibrations. Systematic Biology, 61, 346–359. https://doi.org/10.1093/sysbio/syr107
  20. Schrempf, D. (2019) The ELynx Suite. https://github.com/dschrempf/elynx (Accessed April 8, 2024).
  21. Toussaint, E.F.A., Seidel, M., Arriaga‐Varela, E., Hájek, J., Král, D., Sekerka, L., Short, A.E.Z. & Fikáček, M. (2017) The peril of dating beetles. Systematic Entomology, 42, 1–10. https://doi.org/10.1111/syen.12198
  22. Trautwein, M.D., Wiegmann, B.M., Beutel, R., Kjer, K.M. & Yeates, D.K. (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annual Review of Entomology, 57, 449–468. https://doi.org/10.1146/annurev-ento-120710-100538
  23. Whelan, N. V. & Halanych, K. M. (2017) Who let the CAT out of the bag? Accurately dealing with substitutional heterogeneity in phylogenomic analyses. Systematic Biology, 66 (2), 232–255. https://doi.org/10.1093/sysbio/syw084
  24. Zhang, S.Q., Che, L.H., Li, Y., Liang, D., Pang, H., Ślipiński, A. & Zhang, P. (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications, 9, 205. https://doi.org/10.1038/s41467-017-02644-4