Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-20
Page range: 723-739
Abstract views: 137
PDF downloaded: 102

Swarming behaviour and pollination by Cretaceous thrips (Insecta: Thysanoptera)

Departament de Dinàmica de la Terra i de l’Oceà, Facultad de Ciències de la Terra, Universitat de Barcelona (UB), c/Martí i Franquès s/n, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028, Barcelona, Spain
Instituto Geológico y Minero de España, CSIC, c/Cirilo Amorós 42, 46004, Valencia, Spain
Institut Botànic de Barcelona, CSIC–CMCNB, Passeig del Migdia s/n, 08038, Barcelona, Spain
Departament de Dinàmica de la Terra i de l’Oceà, Facultad de Ciències de la Terra, Universitat de Barcelona (UB), c/Martí i Franquès s/n, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028, Barcelona, Spain
amber Cenomanian gymnosperms paleobiology Myanmar Insecta Thysanoptera

Abstract

Direct biotic interactions fossilize in low probability and are difficult to be recognized. This is because they normally occur over a brief time span and the conditions required for their fossilization are exceptional. Swarm behaviour in Thysanoptera (thrips) is a phenomenon that is not yet fully understood but is crucial for the survival and success of representatives of this order of insects. Moreover, the role of thrips as pollinators of gymnosperms had not gained significant attention until the Recent decline in insect populations, particularly pollinators, and the consequent impact on the flora that relies on them. Here we describe a thrips assemblage in Cenomanian Kachin amber (Myanmar, ca. 99 Ma), composed of both, females and males of the new species Burmathrips engeli gen. et sp. nov., belonging to the family Stenurothripidae, that has been interpreted as a swarm. These specimens have Cycadopites-type pollen grains attached to their bodies, with additional associated grains, most likely detached, being abundant in the same amber flow, throughout the amber piece. Nowadays, hexapod aggregations are related to different activities like mating and courtship, but identifying this type of behaviour in the fossil record is difficult. This finding demonstrates the antiquity of mating-related swarming behaviour in thrips, which is consistent with that of their extant counterparts. It also provides direct evidence that gregariousness facilitated the prominent role of thrips as gymnosperm pollinators during the Cretaceous.

References

  1. Abbot, P. & Chapman, T. (2017) Sociality in aphids and thrips. In: Rubenstein, D.R. & Abbot, P. (Eds), Comparative social evolution. Cambridge University Press, pp. 154–187. https://doi.org/10.1017/9781107338319.007
  2. Arillo, A. (2007) Paleoethology: fossilized behaviours in amber. Geologica Acta, 5 (2), 159–166. https://doi.org/10.1344/105.000000301
  3. Bagnall, R.S. (1914) On Stenurothrips succineus gen. et sp. nov., an interesting Tertiary thysanopteron. Geological Magazine, 6 (1), 483–485. https://doi.org/10.1017/S0016756800153294
  4. Bagnall, R.S. (1927) LXXIV.—Contributions towards a knowledge of the European Thysanoptera.—III. Annals and Magazine of Natural History, Series 9, 20 (120), 561–585. https://doi.org/10.1080/00222932708655491
  5. Balme, B.E. (1995) Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87 (2-4), 81–323. https://doi.org/10.1016/0034-6667(95)93235-X
  6. Barden, P., Perrichot, V. & Wang, B. (2020) Specialized predation drives aberrant morphological integration and diversity in the earliest ants. Current Biology, 30 (19), 3818–3824. https://doi.org/10.1016/j.cub.2020.06.106
  7. Bolinder, K., Humphreys, A.M., Ehrlén, J., Alexandersson, R., Ickert-Bond, S.M. & Rydin, C. (2016) From near extinction to diversification by means of a shift in pollination mechanism in the gymnosperm relict Ephedra (Ephedraceae, Gnetales). Botanical Journal of the Linnean Society, 180 (4), 461–477. https://doi.org/10.1111/boj.12380
  8. Bolotov, N., Aksenova, O.V., Vikhrev, I.V., Konopleva, E.S., Chapurina, Y.E. & Kondakov, A.V. (2021) A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Scientific Reports, 11, 6646. https://doi.org/10.1038/s41598-021-86241-y
  9. Brown, B.V. & Pike, E.M. (1990) Three new fossil phorid flies (Diptera: Phoridae) from Canadian Late Cretaceous Amber. Canadian Journal of Earth Sciences, 27, 845–848. https://doi.org/10.1139/e90-087
  10. Collett, M., Despland, E., Simpson, S.J. & Krakauer, D.C. (1998) Spatial scales of desert locust gregarization. Proceedings of the National Academy of Sciences of the United States of America, 95 (22), 13052–13055. https://doi.org/10.1073/pnas.95.22.13052
  11. Corral, J.C., López Del Valle, R. & Alonso, J. (1999) El ámbar cretácico de Álava (Cuenca Vasco-Cantábrica, norte de España). Su colecta y preparación. Estudios del Museo de Ciencias Naturales de Álava, 14 (2), 7–21.
  12. Crepet, W.L. (1974) Investigations of North American cycadeoids: the reproductive biology of Cycadeoidea. Palaeontographica, Abt. B, Paläophytologie, 148, 144–169.
  13. Crespi, B.J. (1986) Territoriality and fighting in a colonial thrips, Hoplothrips pedicularius, and sexual dimorphism in Thysanoptera. Ecological Entomology, 11 (2), 119–130. https://doi.org/10.1111/j.1365-2311.1986.tb00286.x
  14. Crespi, B.J. (1988) Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera). Behavioral Ecology and Sociobiology, 22, 293–301. https://doi.org/10.1007/BF00299845
  15. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21 (5), 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  16. Fensome, R.A. (1983) Miospores from the Jurassic–Cretaceous Boundary Beds, Aklavik Range, Northwest Territories, Canada: Incorporating taxonomic reviews of several groups of Mid- to Late Mesozoic miospores. Doctoral thesis, University of Saskatchewan, Saskatoon, Canada.
  17. Fraser, D., Soul, L.C., Tóth, A.B., Balk, M.A., Eronen, J.T., Pineda-Munoz, S., Shupinski, A.B., Villaseñor, A., Barr, W.A., Behrensmeyer, A.K., Du, A., Faith, J.T., Gotelli, N.J., Graves, G.R., Jukar, A.M., Looy, C.V., Miller, J.H., Potts, R. & Lyons, S.K. (2021) Investigating biotic interactions in deep time. Trends in Ecology & Evolution, 36 (1), 61–75. https://doi.org/10.1016/j.tree.2020.09.001
  18. Grimaldi, D.A. & Vea, I.M. (2021) Insects with 100 million-year-old dinosaur feathers are not ectoparasites. Nature Communications, 12, 1469. https://doi.org/10.1038/s41467-021-21751-x
  19. Guo, D.W., Engel, M.S., Shih, C. & Ren, D. (2024) New stenurothripid thrips from mid-Cretaceous Kachin amber (Thysanoptera, Stenurothripidae). ZooKeys, 1192, 197–212. https://doi.org/10.3897/zookeys.1192.117754
  20. Haliday, A.H. (1836) An epitome of the British genera in the order Thysanoptera with indications of a few of the species. Entomological Magazine, 3, 439–451.
  21. Heming, B.S. (1993) Structure, function, ontogeny and evolution of feeding in thrips (Thysanoptera). In: Schaefer, C.W. & Leschen, R.B. (Eds), Functional Morphology of insect feeding. Thomas Say Publications in Entomology, pp. 3–41. https://doi.org/10.4182/WEEJ5334.1993.3
  22. Hood, J.D. (1914) Studies in tubuliferous Thysanoptera. Proceedings of the Biological Society of Washington, 27, 151–172.
  23. Kirk, W.D.J. (1984) Pollen‐feeding in thrips (Insecta: Thysanoptera). Journal of Zoology, 204 (1), 107–117. https://doi.org/10.1111/j.1469-7998.1984.tb02364.x
  24. Kirk, W.D.J. & Hamilton, J.G. (2004) Evidence for a male-produced sex pheromone in the western flower thrips Frankliniella occidentalis. Journal of Chemical Ecology, 30, 167–174. https://doi.org/10.1023/B:JOEC.0000013189.89576.8f
  25. Labandeira, C.C. (1998) How old is the flower and the fly? Science, 280, 57–59. https://doi.org/10.1126/science.280.5360.57
  26. Labandeira, C.C. (2000) The paleobiology of pollination and its precursors. Paleontological Society Papers, 6, 233–270. https://doi.org/10.1017/S1089332600000784
  27. Labandeira, C.C. (2010) The pollination of Mid Mesozoic seed plants and the early history of long-proboscid insects. Annals of the Missouri Botanical Garden, 97 (4), 469–513. https://doi.org/10.3417/2010037
  28. Labandeira, C.C., Kvaček, J. & Mostovski, M.B. (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon, 56 (3), 663–695. https://doi.org/10.2307/25065852
  29. Lin, X.D., Labandeira, C.C., Shih, C., Hotton, C.L. & Ren, D. (2019) Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nature Communications, 10 (1), 1–14. https://doi.org/10.1038/s41467-019-09236-4
  30. Linné, C. von (1771) Mantissa plantarum altera generum editionis VI et specierum editionis II. Laurentius Salvius, Holmiae [= Stockholm], pp. [1–7], pp. 144–588.
  31. Mao, Y.Y., Liang, K., Su, Y.T., Li, J.G., Rao, X., Zhang, H., Xia, F.Y., Fu, Y.Z., Cai, C.Y. & Huang, D.Y. (2018) Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology, 1 (1), 91–103. https://doi.org/10.11646/palaeoentomology.1.1.11
  32. McGavin, G.C. & Davranoglou, L.-R. (2022) Essential Entomology. Oxford University Press, 314 pp.
  33. Milne, M., Walter, G.H. & Milne, J.R. (2002) Mating aggregations and mating success in the flower thrips, Frankliniella schultzei (Thysanoptera: Thripidae), and a possible role for pheromones. Journal of Insect Behavior, 15, 351–368. https://doi.org/10.1023/A:1016265109231
  34. Moulton, D. (1933) Oligothrips oreios a new genus and species of thrips belonging to the family Opadothripidae Bagnall. Pan-Pacific Entomologist, 9, 139–140.
  35. Mound, L. (1991) The first thrips species (Insecta, Thysanoptera) from cycad male cones, and its family level significance. Journal of Natural History, 25 (3), 647–652. https://doi.org/10.1080/00222939100770411
  36. Mound, L.A. & Marullo, R. (1998) Two new basal-clade Thysanoptera from California with old world affinities. Journal of the New York Entomological Society, 106 (2/3), 81–94.
  37. Mound, L.A. & Terry, L.I. (2001) Thrips pollination of the central Australian cycad, Macrozamia macdonnellii (Cycadales). International Journal of Plant Sciences, 162 (1), 147–154. https://doi.org/10.1086/317899
  38. Mound, L.A., Wang, Z.H., Lima, É.F. & Marullo, R. (2022) Problems with the concept of “pest” among the diversity of pestiferous thrips. Insects, 13 (1), 1–17. https://doi.org/ 10.3390/insects13010061
  39. Neems, R.M., Lazarus, J. & McLachlan, A.J. (1992) Swarming behavior in male chironomid midges: a cost-benefit analysis. Behavioral Ecology, 3 (4), 285–290. https://doi.org/10.1093/beheco/3.4.285
  40. Nepi, M., Little, S., Guarnieri, M., Nocentini, D., Prior, N., Gill, J., Tomlinson, B.P., Ickert-Bond, M., Pirone, C., Pacini, E. & von Aderkas, P. (2017) Phylogenetic and functional signals in gymnosperm ovular secretions. Annals of Botany, 120 (6), 923–936. https://doi.org/10.1093/aob/mcx103
  41. Niassy, S., Tamiru, A., Hamilton, J.G., Kirk, W.D., Mumm, R., Sims, C., De Kogel, W.J., Ekesi, S., Maniania, N.K., Bandi, K., Mitchell, F. & Subramanian, S. (2019) Characterization of male-produced aggregation pheromone of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Journal of Chemical Ecology, 45, 348–355. https://doi.org/10.1007/s10886-019-01054-8
  42. Osborn, J.M. & Taylor, T.N. (1995) Pollen morphology and ultrastructure of the Bennettitales: in situ pollen of Cycadeoidea. American Journal of Botany, 82 (8), 1074–1081. https://doi.org/10.1002/j.1537-2197.1995.tb11573.x
  43. Peña-Kairath, C., Delclòs, X., Álvarez-Parra, S., Peñalver, E., Engel, M.S., Ollerton, J. & Peris, D. (2023) Insect pollination in deep time. Trends in Ecology & Evolution, 38 (8), 749–759. https://doi.org/10.1016/j.tree.2023.03.008
  44. Peñalver, E. & Nel, P. (2010) Hispanothrips from Early Cretaceous Spanish amber, new genus of the resurrected family Stenurothripidae (Insecta: Thysanoptera). Annales de la Société Entomologique de France, 46 (1-2), 138–147. https://doi.org/10.1080/00379271.2010.10697649
  45. Peñalver, E., Arillo, A., Pérez-de la Fuente, R., Riccio, M.L., Delclòs, X., Barrón, E. & Grimaldi, D.A. (2015) Long-proboscid flies as pollinators of Cretaceous gymnosperms. Current Biology, 25, 1917–1923. https://doi.org/10.1016/j.cub.2015.05.062
  46. Peñalver, E., Labandeira, C.C., Barrón, E., Delclòs, X., Nel, P., Nel, A., Tafforeau, P. & Soriano, C. (2012) Thrips pollination of Mesozoic gymnosperms. Proceedings of the National Academy of Sciences, 109 (22), 8623–8628. https://doi.org/10.1073/pnas.1120499109
  47. Peñalver, E., Peña-Kairath, C., Barrón, E., Nel, P., Nel, A., Delclòs, X., Peris, D., Solórzano-Kraemer, M.M. & Rodrigo, A. (in press) Diverse Mesozoic thrips carrying pollen during the gymnosperm to angiosperm plant-host ecological shift. iScience.
  48. Pergande, T. (1895) Observations on certain Thripidae. Insect Life, 7, 390–395.
  49. Peris, D., Pérez-de la Fuente, R., Peñalver, E., Delclòs, X., Barrón, E. & Labandeira, C.C. (2017) False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Current Biology, 27, 897–904. https://doi.org/10.1016/j.cub.2017.02.009
  50. Peris, D., Labandeira, C.C., Barrón, E., Delclòs, X., Rust, J. & Wang, B. (2020) Generalist pollen-feeding beetles during the Mid-Cretaceous. iScience, 23, 100913. https://doi.org/10.1016/j.isci.2020.100913
  51. Peris, D., Postigo-Mijarra, J.M., Peñalver, E., Pellicer, J., Labandeira, C.C., Peña-Kairath, C., Pérez-Lorenzo, I., Sauquet, H., Delclòs, X. & Barrón, E. (2024) The role of thermogenesis in the origin of insect pollination. Nature Plants, 10, 1297–1303. https://doi.org/10.1038/s41477-024-01775-z
  52. Priesner, H. (1924) Bernstein-Thysanopteren. Entomologische Mitteilungen, 13 (4-5), 130–151.
  53. Salzman, S., Crook, D., Crall, J.D., Hopkins, R. & Pierce, N.E. (2020) An ancient push-pull pollination mechanism in cycads. Science Advances, 6 (24), eaay6169. https://doi.org/10.1126/sciadv.aay6169
  54. Salzman, S., Whitaker, M., Sierra, A., Bustos Díaz, D.E., Cibrián-Jaramillo, A., Liu, Y., Barona Gómez, F., Zhang, S.Z., Sahu, S. & Villarreal, J.C. (2024) New insights on cycad biology and evolution. Authorea Preprints. https://doi.org/10.22541/au.170750032.26264089/v1
  55. Sánchez-García, A., Delclòs, X., Engel, M.S., Bird, G.J., Perrichot, V. & Peñalver, E. (2017) Marsupial brood care in Cretaceous tanaidaceans. Scientific Reports, 7, 4390. https://doi.org/10.1038/s41598-017-04050-8
  56. Sánchez-García, A., Peñalver, E., Delclòs, X. & Engel, M.S. (2018) Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS One, 13 (2), e0191669. https://doi.org/10.1371/journal.pone.0191669
  57. Saunders, M.E. (2018) Insect pollinators collect pollen from wind‐pollinated plants: implications for pollination ecology and sustainable agriculture. Insect conservation and diversity, 11 (1), 13–31. https://doi.org/10.1111/icad.12243
  58. Schliephake, G. (1990) Beiträge zur Kenntnis fossiler Fransenflügler (Thysanoptera) aus dem Bernstein des Tertiär. 1. Beitrag: Stenurothripidae. Zoologie, 2 (4), 163–184. https://doi.org/10.1007/BF02985981
  59. Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  60. Solórzano-Kraemer, M.M., Peñalver, E., Herbert, M.C., Delclòs, X., Brown, B.V., Aung, N.N. & Peretti, A.M. (2023) Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Scientific Reports, 13, 2907. https://doi.org/10.1038/s41598-023-29612-x
  61. Strassen, R. zur (1973) Fossile Fransenflügler aus mesozoischem Bernstein des Libanon (Insecta: Thysanoptera). Stuttgarter Beiträge zur Naturkunde, (A), 256, 1–51.
  62. Sullivan, R.T. (1981) Insect swarming and mating. The Florida Entomologist, 64 (1), 44–65. https://doi.org/10.2307/3494600
  63. Svensson, B.G. & Petersson, E. (1992) Why insects swarm: testing the models for lek mating systems on swarming Empis borealis females. Behavioral Ecology and Sociobiology, 31, 253–261. https://doi.org/10.1007/BF00171680
  64. Tang, W. (1987) Insect pollination in the cycad Zamia pumila (Zamiaceae). American Journal of Botany, 74 (1), 90–99. https://doi.org/10.1002/j.1537-2197.1987.tb08582.x
  65. Terry, L.I. (1997) Host selection, communication and reproductive behaviour. In: Lewis, T. (Ed.), Thrips as crop pest. CAB International, Wallingford, UK, pp. 65–118.
  66. Terry, L.I. (2001) Thrips and weevils as dual, specialist pollinators of the Australian cycad Macrozamia communis (Zamiaceae). International Journal of Plant Sciences, 162 (6), 1293–1305. https://doi.org/10.1086/321929
  67. Terry, L.I. (2002) Thrips: the primeval pollinators. In: Marullo, R. & Mound, L.A. (Eds), Thrips and tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera. Australian National Insect Collection, Canberra, pp. 157–162.
  68. Terry, L.I. (2023) Pollination: Multimodal signaling in a co-dependent thermogenic gymnosperm system. Current Biology, 33 (9), R353–R356. https://doi.org/10.1016/j.cub.2023.03.051
  69. Terry, L.I. & Dyreson, E. (1996) Behavior of Frankliniella occidentalis (Thysanoptera: Thripidae) within aggregations, and morphometric correlates of fighting. Annals of the Entomological Society of America, 89 (4), 589–602. https://doi.org/10.1093/aesa/89.4.589
  70. Terry, L.I. & Gardner, D. (1990) Male mating swarms in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Journal of Insect Behavior, 3 (1), 133–141. https://doi.org/10.1007/BF01049200
  71. Terry, L.I., Moore, C.J., Roemer, R.B., Brookes, D.R. & Walter, G.H. (2021) Unique chemistry associated with diversification in a tightly coupled cycad-thrips obligate pollination mutualism. Phytochemistry, 186, 112715. https://doi.org/10.1016/j.phytochem.2021.112715
  72. Terry, L.I., Roemer, R.B., Booth, D.T., Moore, C.J. & Walter, G.H. (2016) Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones. Plant, Cell & Environment, 39 (7), 1588–1600. https://doi.org/10.1111/pce.12730
  73. Terry, L.I., Walter, G.H., Donaldson, J.S., Snow, E., Forster, P.I. & Machin, P.J. (2005) Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism. American Journal of Botany, 92 (6), 931–940. https://doi.org/10.3732/ajb.92.6.931
  74. Terry L.I., Walter G.H., Hull C. & Moore C. (2008) Responses of pollinating thrips and weevils to specific Macrozamia cycad cone volatiles. In: Vovides, A.P., Stevenson, D.W.M. & Osborne, R. (Eds), The 7th International Conference on Cycad Biology. Memoirs of The New York Botanical Garden, 97. The New York Botanical Garden Press, New York, pp. 346–371.
  75. Terry, L.I., Walter, G.H., Moore, C., Roemer, R. & Hull, C. (2007) Odor-mediated push-pull pollination in cycads. Science, 318 (5847), 70. https://doi.org/10.1126/science.1145147
  76. Tihelka, E., Li, L., Fu, Y., Su, Y., Huang, D. & Cai, C. (2021) Angiosperm pollinivory in a Cretaceous beetle. Nature Plants, 7 (4), 445–451. https://doi.org/10.1038/s41477-021-00893-2
  77. Tong, T., Shih, C. & Ren, D. (2019) A new genus and species of Stenurothripidae (Insecta: Thysanoptera: Terebrantia) from mid-Cretaceous Myanmar amber. Cretaceous Research, 100, 184–191. https://doi.org/10.1016/j.cretres.2019.03.005
  78. Toon, A., Terry, L.I., Tang, W., Walter, G.H. & Cook, L.G. (2020) Insect pollination of cycads. Austral Ecology, 45 (8), 1033–1058. https://doi.org/10.1111/aec.12925
  79. Trichilo, P.J. & Leigh, T.F. (1988) Influence of resource quality on the reproductive fitness of flower thrips (Thysanoptera: Thripidae). Annals of the Entomological Society of America, 81 (1), 64–70. https://doi.org/10.1093/aesa/81.1.64
  80. Yu, T.T., Thomson, T., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116 (23), 11345–11350. https://doi.org/10.1073/pnas.1821292116
  81. Zavialova, N. & Van Konijnenburg-van Cittert, J.H.A. (2011) Exine ultrastructure of in situ peltasperm pollen from the Rhaetian of Germany and its implications. Review of Palaeobotany and Palynology, 168, 7–20. https://doi.org/10.1016/j.revpalbo.2011.09.007
  82. Zheng, D.R., Chang, S.-C., Perrichot, V., Dutta, S., Rudra, A., Mu, L., Thomson, U., Li, S.C., Zhang, Q., Zhang, Q.Q., Wong, J., Wang, J., Wang, H., Fang, Y., Zhang, H.C. & Wang, B. (2018) A Late Cretaceous amber biota from central Myanmar. Nature Communications, 9, 3170. https://doi.org/10.1038/s41467-018-05650-2