Abstract
Vitimotauliidae, an extinct caddisfly family with the highest Mesozoic palaeobiodiversity, remains poorly represented in China, with only a few species. Herein, based on comparative morphology and geometric morphometric analyses, one new genus, Trichosukatshevia gen. nov., with two new species, T. simplex sp. nov. and T. furcivenata sp. nov., and one new species of Multimodus Sukatsheva, 1968, M. yixianensis sp. nov. are described and illustrated from the Lower Cretaceous of Yixian Formation in China. These discoveries of new taxa significantly enhance the taxonomic diversity of Vitimotauliidae. Notably, among them, Trichosukatshevia gen. nov. represents a novel lineage characterized by an open MC, a previously unreported character in the family. Moreover, morphological variations at the branching point of F4 and cross-vein m-cua are identified, expands the known morphological disparity of wing venation in Vitimotauliidae. This study highlights the evolutionary and morphological complexity of Mesozoic caddisflies, providing critical insights into their diversification during the Early Cretaceous.
References
- Bai, Z.D. (2000) 1:50000 Regional Geological Survey Report of 5 Maps, Duolun County, Inner Mongolia. China University of Geosciences (Beijing), Beijing.
- Bennett, J., Riibak, K., Tamme, R., Lewis, R. & Partel, M. (2016) The reciprocal relationship between competition and intraspecific trait variation. Journal of Ecology, 104, 1410–1420. https://doi.org/10.1111/1365-2745.12614
- Chang, S.C., Gao, K.Q., Zhou, C.F. & Jourdan, F. (2017) New chronostratigraphic constraints on the Yixian Formation with implications for the Jehol Biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 399–406. https://doi.org/10.1016/j.palaeo.2017.09.026
- Chao, J.W., Wang, J.J., Shih, C.K. & Ren, D. (2024) New fossil caddisflies (Trichoptera, Dysoneuridae) from the Lower Cretaceous of Inner Mongolia, China. Cretaceous Research, 159. https://doi.org/10.1016/j.cretres.2024.105877
- Hartl, D.L. & Clark, A.G. (2007) Principles of population genetics. 4th edition. Sinauer Associates, Sunderland, 545 pp.
- Helmus, M., Savage, K., Diebel, M., Maxted, J. & Ives, A. (2007) Separating the determinants of phylogenetic community structure. Ecology Letters, 10, 917–925. https://doi.org/10.1111/j.1461-0248.2007.01083.x
- Holzenthal, R.W., Blahnik, R.J., Prather, A.L. & Kjer, K.M. (2007) Order Trichoptera Kirby, 1813 (Insecta), caddisflies. Zootaxa, 1668 (1), 639–698. https://doi.org/10.11646/zootaxa.1668.1.29
- Kirby, W. (1813) Strepsiptera, a new order of insects proposed; and the characters of the order, with those of its genera, laid down. Transactions of the Linnean Society, London, 11, 86–122. https://doi.org/10.1111/j.1096-3642.1813.tb00040.x
- Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
- Lu, Y.Y., Ballerio, A., Wang, S., Zou, Z.T., Gorb, S.N., Wang, T., Li, L.L., Ji, S., Zhao, Z.Y., Li, S., Tong, Y.J., Chen, Y.D., Zhuo, D., Luo, C.H., Zhang, W.W., Liu, N., Gu, Q. & Bai, M. (2022) The evolution of conglobation in Ceratocanthinae. Communication biology, 5, 777. https://doi.org/10.1038/s42003-022-03685-2
- MacArthur, R. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. American Naturalist, 101, 377–385. https://doi.org/10.1086/282505
- Neboiss, A. (1986) Atlas of Trichoptera of the SW Pacific-Australian Region. Springer Science & Business Media, Berlin, 294 pp. https://doi.org/10.1007/978-94-009-4814-3
- Ren, D. (1995) Insect: Trichoptera. In: Ren, D., Lu, L.W., Gao, Z.G. & Ji, S.A. (Eds), Faunae and stratigraphy of the Jurassic–Cretaceous in Beijing and the adjacent area. Seismological Press, Beijing, pp. 95–97. [In Chinese]
- Ren, D., Shih, C.K., Gao, T.P., Wang, Y.J. & Yao, Y.Z. (2019) Rhythms of insect evolution: Evidence from the Jurassic and Cretaceous in Northern China. John Wiley & Sons Ltd, Chichester, New York, 710 pp. https://doi.org/10.1002/9781119427957
- Rohlf, F.J. (2006a) tpsUTIL, file utility program. Department of Ecology and Evolution, State University of New York at Stony Brook.
- Rohlf, F.J. (2006b) tpsDig, digitize landmarks and outlines. Department of Ecology and Evolution, State University of New York at Stony Brook.
- Shih, P.J.M., Li, L.F., Li, Y.D. & Ren, D. (2020) Application of geometric morphometric analyses to confirm three new wasps of Evaniidae (Hymenoptera: Evanioidea) from mid-Cretaceous Myanmar amber. Cretaceous Research, 109, 104249. https://doi.org/10.1016/j.cretres.2019.104249
- Sukatsheva, I.D. (1968) Mesozoic caddisflies (Trichoptera) from Transbaikalia. Paleontol. Zh. 2, 59–75. [In Russian]
- Sukatsheva, I.D. (1982) Historical development of the order of caddisflies. Trudy Paleontologicheskogo Institute Akademiia Nauk SSSR, 197, 1–112. [In Russian]
- Sukatsheva, I.D. (1990) Caddisflies. Phryganeina. In: Rasnitsyn, A.P. (Ed.), Late Mesozoic insects of Eastern Transbaikalia. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 239, 94–122 pp. [In Russian]
- Sukatsheva, I.D. (1992) New fossil representatives of caddisflies (Phryganeida) from Mongolia. In: Grunt, T.A. (Ed.), New taxa of fossil invertebrates of Mongolia. Trudy Sovmestnoj Sovetsko-Mongol'skoj paleontologicheskoj ekspeditsii, 41, 111–117 pp. [In Russian]
- Sukatsheva, I.D. & Aristov, D.S. (2020) New Caddisflies (Insecta, Trichoptera) of the families Vitimotauliidae and Philopotamidae from the Khasurty Locality (Lower Cretaceous, Russia) with a brief review of the world fossil fauna. Paleontological Journal, 4, 54–63. https://doi.org/10.1134/S0031030120040139
- Sukatsheva, I.D. & Aristov, D.S. (2021) New data on Cretaceous caddisflies family Vitimotauliidae (Insecta, Trichoptera) from Buryatia (Khasurty Locality). Paleontological Journal, 4, 35–40. https://doi.org/10.1134/S0031030121330017
- Sukatsheva, I.D. & Jarzembowski, E.A. (2001) Fossil caddisflies (Insecta: Trichoptera) from the Early Cretaceous of southern England Ⅱ. Cretaceous Research, 22, 685–698. https://doi.org/10.1006/cres.2001.0292
- Villemant, C., Simbolotti, S. & Kenis, M. (2007) Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Systematic Entomology, 32, 625–634. https://doi.org/10.1111/j.1365-3113.2007.00389.x
- Wang, F.Y., Shih, C.K., Ren, D. & Wang, Y.J. (2017) Quantitative assessments and taxonomic revision of the genus Archirhagio with a new species from Daohugou, China (Diptera: Archisargidae). Systematic Entomology, 42, 230–239. https://doi.org/10.1111/syen.12204
- Wang, J.J., Zhang, W.T., Engle, M.S., Sheng, X.Y., Shih, C.K. & Ren, D. (2022) Early evolution of wing scales prior to the rise of moths and butterflies. Current Biology, 32, 3808–3814. https://doi.org/10.1016/j.cub.2022.06.086
- Wang, M.X., Liang, J.H., Ren, D. & Shih, C.K. (2008) New fossil Vitimotauliidae (Insecta: Trichoptera) from the Jehol Biota of Liaoning Province, China. Cretaceous Research, 30, 592–598. https://doi.org/10.1016/j.cretres.2008.07.017
- Xiao, L.F., Labandeira, C.C. & Ren. D. (2022) Insect herbivory immediately before the eclipse of the gymnosperms: The Dawangzhangzi plant assemblage of Northeastern China. Insect Science, 29, 1483–1520. https://doi.org/10.1111/1744-7917.12988
- Xue, W., Song, K.D., Liu, X.Y., Peng, Y.B., Yan, P.B., Gao, L. & Zhi, C. (2019) Zircon U-Pb chronology of Mesozoic rocks in Sandaogou area, Duolun County, Inner Mongolia and its ore-prospecting significance. Geological Science and Technology Information, 38, 69–80. [In Chinese]
- Zhuang, J.L., Rasnitsyn, A.P., Shih, C.K., Ren, D. & Wang, M. (2022) New Pamphiliids with varying venations from Lower Cretaceous Yixian Formation of Northeast China (Hymenoptera, Pamphiliidae). Insects, 13, 947. https://doi.org/10.3390/insects13100947
- Zhao, W., Liu, H.Y., Ge, X.Y. & Yang, Y.X. (2023) Evaluating the significance of wing shapes in inferring phylogenetic proximity among the generic taxa: an example of Cantharinae (Coleoptera, Cantharidae). Arthropod Systematics & Phylogeny, 81, 303–316. https://doi.org/10.3897/asp.81.e101411