Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-06-24
Page range: 271–278
Abstract views: 193
PDF downloaded: 9

Protopsyllidioids and their behaviour “frozen” in mid-Cretaceous Burmese amber

State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China University of Science and Technology of China, Hefei 230000, People’s Republic of China
Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, Fanar - El-Matn, PO box 26110217, Lebanon
State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
Hemiptera Protopsyllidioidea Postopsyllidium fossil insects population dynamics

Abstract

Fossilized inclusions trapped in amber often display great degrees of conservation for studies concerning their taxonomy, biodiversity and evolution, and in some cases, their ecology and behaviour. Knowledge on the biology of the extinct hemipteran superfamily Protopsyllidioidea is very scarce; the insight on the ecology and behaviour of this group is still lacking. Fossil protopsyllidioids conserved in amber can be of great value for acquiring such data, and can contribute to the understanding of their evolution and palaeoenvironment. Herein, we study a case of a gregarious assemblage of protopsyllidioid individuals, belonging to the genus Postopsyllidium Grimaldi, 2003, preserved in a single piece of Burmese amber. We attempt to shed some light on the population dynamics and lifestyle of this extinct genus and possibly of protopsyllidioids in general.

References

  1. Andersen, N.M. & Poinar, G.O. Jr. (1998) A marine water strider (Hemiptera: Vellidae) from Dominican amber. Insect Systematics & Evolution, 29 (1), 1–9.

    https://doi.org/10.1163/187631298X00131

    Amyot, C.J.B. & Audinet-Serville, A. (1843) Histoire naturelle des insectes. Hémiptères. Librairie Encyclopédique de Roret, Paris, 675 pp.

    Arillo, A. (2007) Paleoethology: fossilized behaviours in amber. Geologica Acta, 5 (2), 159–166.

    https://doi.org/10.1016/j.crpv.2006.10.004

    Azar, D. (2007) Preservation and accumulation of biological inclusions in Lebanese amber and their significance. Comptes Rendus Palevol, 6, 151–156.

    https://doi.org/10.1016/j.crpv.2006.10.004

    Batelka, J., Engel, M.S., Falin, Z.H. & Prokop, J. (2011) Two new ripidiine species in Dominican amber with evidence of aggregative behaviour of males “frozen” in the fossil record (Coleoptera: Ripiphoridae). European Journal of Entomology, 108 (2), 275–286.

    https://doi.org/10.14411/eje.2011.037

    Becker-Migdisova, E.E. (1985) Iskopaemye nasekomye Psyllomorpha. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 206, 1–92. [In Russian]

    Boucot, J. & Poinar, G.O.Jr. (2010) Fossil behaviour compendium. CRC Press, 424 pp.

    https://doi.org/10.1201/9781439810590

    Carpenter, F.M. (1931) The Lower Permian insects of Kansas. Part 4. The order Hemiptera, and additions to the Paleodictyoptera and Protohymenoptera. American Journal of Science, 22, 113–130.

    https://doi.org/10.2475/ajs.s5-22.128.113

    Chakrabarti, B. & Chakrabarti, S. (2012) Longevity and sex ratio of two gall-inducing psyllids: Trioza fletcheri minor Crawford and Trioza hirsuta (Crawford). Proceedings of the Zoological Society (Kolkata), 65 (2), 91–94.

    https://doi.org/10.1007/s12595-012-0038-z

    Grimaldi, D.A. (2003) First amber fossils of the extinct family Protopsyllidiidae, and their phylogenetic significance among Hemiptera. Insect Systematics & Evolution, 34 (3), 329–344.

    https://doi.org/10.1163/187631203788964746

    Hakim, M., Azar, D., Szwedo, J., Brysz, A.M. & Huang, D.Y. (2019) New paraneopterans (Protopsyllidioidea, Hemiptera) from the mid-Cretaceous amber of northern Myanmar. Cretaceous Research, 98, 136–152.

    https://doi.org/10.1016/j.cretres.2018.12.012

    Hardy, N.B. (2018) Chapter 20: The biodiversity of Sternorrhyncha: scale insects, aphids, psyllids, and whiteflies. In: Foottit, R.G & Adler, P.H. (Eds.), Insect biodiversity: science and society. Volume II. John Wiley & Sons Ltd, Hoboken, New Jersey, pp. 591–625.

    https://doi.org/10.1002/9781118945582.ch20

    Himler, A.G., Adachi-Hagimori, T., Bergen, J.E., Kozuch, A., Kelly, S.E., Tabashnik, B.E., Chiel, E., Duckworth, V.E., Dennehy, T.J., Zchori-Fein, E. & Hunter, M.S. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332, 254–256.

    https://doi.org/10.1126/science.1199410

    Hodkinson, I.D. (2009) Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. Journal of Natural History, 43 (1–2), 65–179.

    https://doi.org/10.1080/00222930802354167

    Kania, I., Wang, B. & Szwedo, J. (2015) Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest Upper Cretaceous Burmese amber. Cretaceous Research, 52, 522–530.

    https://doi.org/10.1016/j.cretres.2014.03.002

    Klimaszewski, S.M. (1995) Supplement to the knowledge of Protopsyllidiidae (Homoptera, Psyllomorpha). Acta Biologica Silesiana, 27 (44), 33–43.

    Labina, E.S., Nokkala, S., Maryańska-Nadachowska, A. & Kuznetsova, V.G. (2009) The distribution and population sex ratio of Cacopsylla myrtilli (W. Wagner, 1947) (Hemiptera: Psylloidea). Folia Biologica, 57 (3–4), 157–163.

    https://doi.org/10.3409/fb57_3-4.157-163

    Latreille, P.A. (1807) Genera crustaceorum et insectorum: secundum ordinem naturalem in familias disposita, iconibus exemplisque plurimis explicata. Amand Koenig, Paris, 258 pp.

    https://doi.org/10.5962/bhl.title.5093

    Linnaeus, C. (1758) Systema Naturae per Regna tria Naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synortymis, locis. Tomus I. Holmiae, Impensis Direct. Laurentii Salvii, 824 pp.

    https://doi.org/10.5962/bhl.title.542

    Lubanga, U.K., Guédot, C., Percy, D.M. & Steinbauer, M.J. (2014) Semiochemical and vibrational cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): a synthesis. Insects, 5, 577–595.

    https://doi.org/10.3390/insects5030577

    Lubanga, U.K., Peters, R.A. & Steinbauer, M.J. (2018) Convenience polyandry and the role of lone and reciprocal calls in a psyllid. Animal Behaviour, 145, 1–10.

    https://doi.org/10.1016/j.anbehav.2018.09.001

    Nel, A., Prokop, J., Nel, P., Grandcolas, P., Huang, D.Y., Roques, P., Guilbert, E., Dostál, O. & Szwedo, J. (2012) Traits and evolution of wing venation pattern in paraneopteran insects. Journal of Morphology, 273 (5), 480–506.

    https://doi.org/10.1002/jmor.11036

    Percy, D.M., Taylor, G.S. & Kennedy, M. (2006) Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebrate Systematics, 20 (4), 431–445.

    https://doi.org/10.1071/IS05057

    Poinar, G.O.Jr. & Poinar, R. (1999) The amber forest. A reconstruction of a vanished world. Princeton University Press, Princeton, xviii + 239 pp.

    Ross, L., Dealey, E.J., Beukeboom, L.W. & Shuker, D.M. (2011) Temperature, age of mating and starvation determine the role of maternal effects on sex allocation in the mealybug Planococcus citri. Behavioural Ecology and Sociobiology, 65 (5), 909–919.

    https://doi.org/10.1007/s00265-010-1091-0

    Stockton, D.G., Martini, X. & Stelinski, L.L. (2017) Male psyllids differentially learn in the context of copulation. Insects, 8 (1), 16.

    https://doi.org/10.3390/insects8010016

    Tishechkin, D.Y. (2007) Новые данные о вибрационной коммуникации листоблошек семейств Aphalaridae и Triozidae (Homoptera, Psyllinea). Zoologicheskii Zhurnal, 86 (5), 547–553. [English version: New data on vibratory communication in jumping plant lice of the families Aphalaridae and Triozidae (Homoptera, Psyllinea). Entomological Review, 2007, 87 (4), 394–400.]

    https://doi.org/10.1134/S0013873807040021

    Van den Berg, M.A., Deacon, V.E. & Thomas, C.D. (1991) Ecology of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae). 3. Mating, fertility and oviposition. Phytophylactica, 23 (3), 195–200.

    Wagner, W. (1947) Neue deutsche Homopteren und Bemerkungen über schon bekannte Arten. Verhandlungen des Vereins für Naturwissenschaftliche Heimatforschung zu Hamburg, 29, 72–89.

    Webb, J.W. & Moran, V.C. (1978) The influence of the host plant on the population dynamics of Acizzia russellae (Homoptera: Psyllidae). Ecological Entomology, 3 (4), 313–321.

    https://doi.org/10.1111/j.1365-2311.1978.tb00932.x

    Wunderlich, J. (2002) Ant mimicry by spiders and spider-mite interactions preserved in Baltic amber (Arachnida: Acari, Araneae), pp. 355–358. In: Toft, S. & Scharff, N. (Eds.), European Arachnology 2000: Proceedings of the 19th European Colloquium of Arachnology, Aarhus University Press, 358 pp.

    Yang, X.B. & Liu, T.X. (2009) Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology, 38 (6), 1661–1667.

    https://doi.org/10.1603/022.038.0619