Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-04-30
Page range: 212–219
Abstract views: 406
PDF downloaded: 1

A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China Royal Saskatchewan Museum, Regina, Saskatchewan S4P 4W7, Canada Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China Center of Excellence, Chinese Academy of Sciences, Beijing, China
Royal Saskatchewan Museum, Regina, Saskatchewan S4P 4W7, Canada Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
General Enantiornithes osteology scutellae scale filament Myanmar Albian–Cenomanian

Abstract

Recent discoveries of enantiornithine remains in Burmese amber have provided a wealth of paleobiological data on this extinct clade of Mesozoic birds. Amber, as a unique medium of fossilization, preserves in three dimensions structures with details unmatched elsewhere in the fossil record. This provides the opportunity to combine osteological information with more detailed information on integumentary structures, including soft tissues and the plumage of the specimens. Herein, we describe an isolated bird foot, DIP-V-19354, consisting of complete metatarsals and digits, including the claws. Placement among the Enantiornithes is supported by the presence of a metatarsal IV with a trochlea formed by a single condyle and the large size and curvature of the claws. The bones of the right foot are preserved fully encased in soft tissue. Scutellae scale filaments (SSFs) are present along the metatarsals and digits, and are similar to those previously described in other enantiornithines. The distribution and relative size of the SSFs on the longest digit support the hypothesis of a mechanosensory tactile role of these structures: this may implicate the digit in the feeding strategy of the animal, as has been suggested for Elektorornis. Unlike many of the previously described enantiornithine remains from this deposit, the taphonomic history of DIP-V-19354 suggests that the foot was trapped in resin flows above the forest floor, likely on the trunk of a tree, after the bird had died.

References

  1. Chang, M.M. (2011) The Jehol Fossils: The emergence of feathered dinosaurs, beaked birds and flowering plants. 2nd edition. Elsevier / Academic Press, Amsterdam, Boston, London, 208 pp.

    Chiappe, L.M. & Walker, C.A. (2002) Skeletal morphology and systematics of the Cretaceous Euenantiornithines (Ornithothoraces: Enantiornithes). In: Chiappe, L.M. & Witmer, L.M. (Eds.), Mesozoic birds: Above the heads of dinosaurs. University of California Press, Berkeley, pp. 240–267.

    Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21 (5), 441–455.

    https://doi.org/10.1016/S1367-9120(02)00044-5

    Cunningham, S.J., Alley, M.R. & Castro, I. (2010) Facial bristle feather histology and morphology in New Zealand birds: implications for functions. Journal of Morphology, 272, 118–128.

    https://doi.org/10.1002/jmor.10908

    Daza, J.D., Stanley, E.L., Wagner, P., Bauer, A.M. & Grimaldi, D.A. (2016) Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Science Advances, 2 (3), 1501080.

    https://doi.org/10.1126/sciadv.1501080

    Dhouailly, D., Hardy, M.H. & Sengel, P. (1980) Formation of feathers on chick foot scales: a stage-dependent morphogenetic response to retinoic acid. Journal of Embryology and Experimental Morphology, 58, 63–78.

    Grimaldi, D.A., Engel, M.S. & Nascimbene, P.C. (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361, 1–71.

    https://doi.org/10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2

    Hattori, S. (2016) Evolution of the hallux in non-avian theropod dinosaurs. Journal of Vertebrate Paleontology, 36, e1116995.

    https://doi.org/10.1080/02724634.2016.1116995

    Lucas, A.M. & Stettenheim, P.R. (1972) Avian anatomy. Integument. United States Department of Agriculture, Washington, D.C., 750 pp.

    Martínez-Delclòs, X., Briggs, D.E.G. & Peñalver, E. (2004) Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology, 203 (1–2), 19–64.

    https://doi.org/10.1016/S0031-0182(03)00643-6

    O’Connor, J.K., Li, D.Q., Lamanna, M.C., Wang, M., Harris, J.D., Atterholt, J. & You, H.L. (2016) A new Early Cretaceous enantiornithine (Aves, Ornithothoraces) from northwestern China with elaborate tail ornamentation. Journal of Vertebrate Paleontology, 36 (1), e1054035.

    https://doi.org/10.1080/02724634.2015.1054035

    Ross, A.J. (2019) Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology, 2, 22–84.

    https://doi.org/10.11646/palaeoentomology.2.1.5

    Ross, A., Mellish, C., York, P. & Crighton, B. (2010) Burmese amber. In: Penney, D. (Ed.), Biodiversity of fossils in amber from the major World deposits. Siri Scientific Press, Manchester, pp. 208–235.

    Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q. & Li, X. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163.

    https://doi.org/10.1016/j.cretres.2012.03.014

    Weitschat, W. & Wichard, W. (2002) Atlas of plants and animals in Baltic amber. Pfeil Verlag, Munich, 256 pp.

    Wu, P., Yan, J., Lai, Y.C., Ng, C.S., Li, A., Jiang, X., Elsey, R.M., Widelitz, R., Bajpai, R., Li, W.H. & Chuong, C.M. (2017) Multiple regulatory modules are required for scale-to-feather conversion. Molecular Biology and Evolution, 35 (2), 417–430.

    https://doi.org/10.1093/molbev/msx295

    Xing, L., McKellar, R.C., Xu, X., Li, G., Bai, M., Persons IV, W.S., Miyashita, T., Benton, M.J., Zhang, J., Wolfe, A.P., Yi, Q., Tseng, K., Ran, H. & Currie, P.J. (2016a) A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Current Biology, 26 (24), 3352–3360.

    https://doi.org/10.1016/j.cub.2016.10.008

    Xing, L., McKellar, R.C., Wang, M., Bai, M., O’Connor, J.K., Benton, M.J., Zhang, J., Wang, Y., Tseng, K., Lockley, M.G., Li, G., Zhang, W. & Xu, X. (2016b) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nature Communications, 7, 12089.

    https://doi.org/10.1038/ncomms12089

    Xing, L., O’Connor, J.K., McKellar, R.C., Chiappe, L.M., Tseng, K., Li, G. & Bai, M. (2017) A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Research, 49, 264–277.

    https://doi.org/10.1016/j.gr.2017.06.001

    Xing, L., Caldwell, M.W., Chen, R., Nydam, R.L., Palci, A., Simões, T.R., McKellar, R.C., Lee, M.S.Y., Liu, Y., Shi, H., Wang, K. & Bai, M. (2018a) A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 4 (7), 5042.

    https://doi.org/10.1126/sciadv.aat5042

    Xing, L., O’Connor, J.K., McKellar, R.C., Chiappe, L.M., Bai, M., Tseng, K., Zhang, J., Yang, H., Fang, J. & Li, G. (2018b) A flattened enantiornithine in mid-Cretaceous Burmese amber: Morphology and preservation. Science Bulletin, 63 (4), 235–243.

    https://doi.org/10.1016/j.scib.2018.01.019

    Xing, L., McKellar, R.C., O’Connor, J.K., Bai, M., Tseng, K. & Chiappe, L.M. (2019a) A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Scientific Reports, 9, 927.

    https://doi.org/10.1038/s41598-018-37427-4

    Xing, L., O’Connor, J.K., Chiappe, L.M., McKellar, R.C., Carroll, N., Hu, H., Bai, M. & Fumin, L. (2019b) A new enantiornithine bird with unusual pedal proportions found in amber. Current Biology, 29, 2396–2401.

    https://doi.org/10.1016/j.cub.2019.05.077

    Xing, L., McKellar, R.C., O’Connor, J.K., Niu, K. & Mai, H. (2019c) A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber. Scientific Reports, 9, 15513.

    https://doi.org/10.1038/s41598-019-51929-9

    Xing, L., McKellar, R.C. & O’Connor, J.K. (2020a) An unusually large bird wing in mid-Cretaceous Burmese amber. Cretaceous Research, 110, 104412.

    https://doi.org/10.1016/j.cretres.2020.104412

    Xing, L., O’Connor, J.K., Niu, K., Cockx, P., Mai, H. & McKellar, R.C. (2020b) A new enantiornithine (Aves) preserved in mid-Cretaceous Burmese amber contributes to growing diversity of Cretaceous plumage patterns. Frontiers in Earth Science. [submitted]

    Xing, L., O’Connor, J.K., Schmitz, L., Chiappe, L.M., McKellar, R.C., Yi, Q. & Li, G. (2020c) Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature, 579, 245–249.

    https://doi.org/10.1038/s41586-020-2068-4

    Yu, T.T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116 (23), 11345–11350.

    https://doi.org/10.1073/pnas.1821292116

    Zhou, Z.H., (2014). The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications. National Science Review, 1 (4), 543–559.

    https://doi.org/10.1093/nsr/nwu055