Skip to main content Skip to main navigation menu Skip to site footer
Published: 2020-12-21

Fleas are parasitic scorpionflies

School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
Siphonaptera Antliophora Mecoptera phylogenomics evolution phylogenetic position


Fleas (Siphonaptera) are medically important blood-feeding insects responsible for spreading pathogens such as plague, murine typhus, and myxomatosis. The peculiar morphology of fleas resulting from their specialised ectoparasitic lifestyle has meant that the phylogenetic position of this diverse and medically important group has remained one of the most persistent problems in insect evolution. Here we test competing hypotheses on the contentious evolutionary relationships of fleas and antliophoran insects using the largest molecular dataset available to date consisting of over 1,400 protein-coding genes, and a smaller mitogenome and Sanger sequence alignment of 16 genes. By removing ambiguously aligned sequence regions and using site-heterogeneous models, we consistently recover fleas nested within scorpionflies (Mecoptera) as sister to the relictual southern hemisphere family Nannochoristidae. Topology tests accounting for compositional heterogeneity strongly favour the proposed topology over previous hypotheses of antliophoran relationships. This clade is diagnosed by shared morphological characters of the head and sperm pump. Fleas may no longer be regarded as a separate insect order and we propose that Siphonaptera should be treated as an infraorder within Mecoptera, reducing the number of extant holometabolan insect orders to ten.


  1. Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K. & Niedźwiedzki, G. (2016) Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia, 49, 455–477.

    Beutel, R.G. & Baum, E. (2008) A longstanding entomological problem finally solved? Head morphology of Nannochorista (Mecoptera, Insecta) and possible phylogenetic implications. Journal of Zoological Systematics and Evolutionary Research, 46, 346–367.

    Beutel, R.G. & Friedrich, F. (2019) Phylogeny. In: Beutel, R.G. & Friedrich, F. (Eds). Nannomecoptera and Neomecoptera. Handbook of Zoology: Arthropoda: Insecta. De Gruyter, Berlin, Boston, pp. 159–162.

    Beutel, R.G., Friedrich, F., Hörnschemeyer, T., Pohl, H., Hünefeld, F., Beckmann, F., Meier, R., Misof, B., Whiting, M.F. & Vilhelmsen, L. (2011) Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics, 27, 341–355.

    Beutel, R.G., Friedrich, F., Yang, X.K. & Ge, S.Q. (2013) Insect morphology and phylogeny: A textbook for students of entomology. Walter de Gruyter, 532 pp.

    Beutel, R.G. & Pohl, H. (2006) Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)? Systematic Entomology, 31, 202–219.

    Beutel, R.G., Yavorskaya, M.I., Mashimo, Y., Fukui, M. & Meusemann, K. (2017) The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Proceedings of Arthropodan Embryological Society of Japan, 51, 1–15.

    Biliński, S.M. & Büning, J. (1998) Structure of ovaries and oogenesis in the snow scorpionfly Boreus hyemalis (Linne) (Mecoptera: Boreidae). International Journal of Insect Morphology and Embryology, 27, 333–340.

    Börner, C. (1904) Zur Systematik der Hexapoda. Zoologischer Anzeiger, 27, 511– 533.

    Boudreaux, H.B. (1979) Arthropod phylogeny with special reference to insects. Wiley-Interscience, New York, 320 pp.

    Byers, G.W. (1996) More on the origin of Siphonaptera. Journal of the Kansas Entomological Society, 69, 274–277.

    Byers, G.W. (2009) Mecoptera: scorpionflies, hangingflies. In: V. H. Resh and R. T. Cardé (Eds). Encyclopedia of insects (Second edition). Academic Press, San Diego, pp. 611–614.

    Chalwatzis, N., Hauf, J., Van De Peer, Y., Kinzelbach, R. & Zimmermann, F.K. (1996) 18S ribosomal RNA genes of insects: primary structure of the genes and molecular phylogeny of the Holometabola. Annals of the Entomological Society of America, 89, 788–803.

    Criscuolo, A. & Gribaldo, S. (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10, 210.

    Dallai, R., Lupetti, P., Afzelius, B.A. & Frati, F. (2003) Sperm structure of Mecoptera and Siphonaptera (Insecta) and the phylogenetic position of Boreus hyemalis. Zoomorphology, 122, 211–220.

    Feuda, R., Dohrmann, M., Pett, W., Philippe, H., Rota-Stabelli, O., Lartillot, N., Wörheide, G. & Pisani, D. (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Current Biology, 27, 3864–3870.e4.

    Fraulob, M., Wipfler, B., Hünefeld, F., Pohl, H. & Beutel, R.G. (2012) The larval abdomen of the enigmatic Nannochoristidae (Mecoptera, Insecta). Arthropod Structure & Development, 41, 187–198.

    Hennig, W. (1969) Die Stammesgeschichte der Insekten. 1st ed. Waldemar Kramer, Frankfurt, 436 pp.

    Hinton, H.E. (1958) The phylogeny of the panorpoid orders. Annual Review of Entomology, 3, 181–206.

    Hinton, H.E. (1981) Biology of insect eggs. Vol. II. Pergamon Press, Oxford, 778 pp.

    Huang, D.Y., Engel, M.S., Cai, C.Y. & Nel, A. (2013) Mesozoic giant fleas from northeastern China (Siphonaptera): Taxonomy and implications for palaeodiversity. Chinese Science Bulletin, 58, 1682–1690.

    Huang, D.Y., Engel, M.S., Cai, C.Y., Wu, H. & Nel, A. (2012) Diverse transitional giant fleas from the Mesozoic era of China. Nature, 483, 201–204.

    Inagaki, Y. & Roger, A.J. (2006) Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Molecular Phylogenetics and Evolution, 40, 428–434.

    Inward, D., Beccaloni, G. & Eggleton, P. (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.

    Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T. & Su, Z.H. (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution, 58, 169–180.

    Johnson, K.P., Dietrich, C.H., Friedrich, F., Beutel, R.G., Wipfler, B., Peters, R.S., Allen, J.M., Petersen, M., Donath, A., Walden, K.K.O., Kozlov, A.M., Podsiadlowski, L., Mayer, C., Meusemann, K., Vasilikopoulos, A., Waterhouse, R.M., Cameron, S.L., Weirauch, C., Swanson, D.R., Percy, D.M., Hardy, N.B., Terry, I., Liu, S., Zhou, X., Misof, B., Robertson, H.M. & Yoshizawa, K. (2018) Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences, 115, 12775–12780.

    Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.

    Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Kjer, K.M. (2004) Aligned 18S and insect phylogeny. Systematic Biology, 53, 506–514.

    Kjer, K.M., Carle, F.L., Litman, J. & Ware, J. (2006) A molecular phylogeny of Insecta. Arthropod Systematics and Phylogeny, 64, 35–44.

    Kjer, K.M., Simon, C., Yavorskaya, M. & Beutel, R.G. (2016) Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of The Royal Society Interface, 13, 20160363.

    Kristensen, N.P. (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Journal of Zoological Systematics and Evolutionary Research, 13, 1–44.

    Kristensen, N.P. (1981) Phylogeny of insect orders. Annual Review of Entomology, 26, 135–157.

    Kristensen, N.P. (1991) Phylogeny of extant hexapods. In: CSIRO Division of Entomology. The insects of Australia: a textbook for students and research workers. 2nd ed. Vol. 1. Melbourne University Press, Carlton, pp. 125–140.

    Kristensen, N.P. (1999) Phylogeny of endopterygote insects, the most successful lineage of living organisms. European Journal of Entomology, 96, 237–253.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Lartillot, N., Brinkmann, H. & Philippe, H. (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology, 7, S4.

    Lartillot, N., Lepage, T. & Blanquart, S. (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics, 25, 2286–2288.

    Lewis, R.E. (1998) Resume of the Siphonaptera (Insecta) of the world. Journal of Medical Entomology, 35, 377–389.

    Marlétaz, F., Peijnenburg, K.T.C.A., Goto, T., Satoh, N. & Rokhsar, D.S. (2019) A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Current Biology, 29, 312–318.

    McKenna, D.D. & Farrell, B.D. (2010) 9-genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS ONE, 5, e11887.

    Medvedev, S.G. (2017) Adaptations of fleas (Siphonaptera) to parasitism. Entomological Review, 97, 1023–1030.

    Michelsen, V. (1997) A revised interpretation of the mouthparts in adult fleas (Insecta, Siphonaptera). Zoologischer Anzeiger, 235, 217–223.

    Mickoleit, G. (2008) Die Sperma-Auspreßvorrichtung der Nannochoristidae (Insecta: Mecoptera. Entomologia Generalis, 193–226.

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), pp. 1–8.

    Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., Niehuis, O., Petersen, M., Izquierdo-Carrasco, F., Wappler, T., Rust, J., Aberer, A.J., Aspöck, U., Aspöck, H., Bartel, D., Blanke, A., Berger, S., Böhm, A., Buckley, T.R., Calcott, B., Chen, J., Friedrich, F., Fukui, M., Fujita, M., Greve, C., Grobe, P., Gu, S., Huang, Y., Jermiin, L.S., Kawahara, A.Y., Krogmann, L., Kubiak, M., Lanfear, R., Letsch, H., Li, Y., Li, Z., Li, J., Lu, H., Machida, R., Mashimo, Y., Kapli, P., McKenna, D.D., Meng, G., Nakagaki, Y., Navarrete-Heredia, J.L., Ott, M., Ou, Y., Pass, G., Podsiadlowski, L., Pohl, H., Reumont, B.M. von, Schütte, K., Sekiya, K., Shimizu, S., Slipinski, A., Stamatakis, A., Song, W., Su, X., Szucsich, N.U., Tan, M., Tan, X., Tang, M., Tang, J., Timelthaler, G., Tomizuka, S., Trautwein, M., Tong, X., Uchifune, T., Walzl, M.G., Wiegmann, B.M., Wilbrandt, J., Wipfler, B., Wong, T.K.F., Wu, Q., Wu, G., Xie, Y., Yang, S., Yang, Q., Yeates, D.K., Yoshizawa, K., Zhang, Q., Zhang, R., Zhang, W., Zhang, Y., Zhao, J., Zhou, C., Zhou, L., Ziesmann, T., Zou, S., Li, Y., Xu, X., Zhang, Y., Yang, H., Wang, J., Wang, J., Kjer, K.M. & Zhou, X. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767.

    Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

    Niehuis, O., Hartig, G., Grath, S., Pohl, H., Lehmann, J., Tafer, H., Donath, A., Krauss, V., Eisenhardt, C., Hertel, J., Petersen, M., Mayer, C., Meusemann, K., Peters, R.S., Stadler, P.F., Beutel, R.G., Bornberg-Bauer, E., McKenna, D.D. & Misof, B. (2012) Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology, 22, 1309–1313.

    Palmer, C. (2010) Diversity of feeding strategies in adult Mecoptera. Terrestrial Arthropod Reviews, 3, 111–128.

    Peters, R.S., Meusemann, K., Petersen, M., Mayer, C., Wilbrandt, J., Ziesmann, T., Donath, A., Kjer, K.M., Aspöck, U., Aspöck, H., Aberer, A., Stamatakis, A., Friedrich, F., Hünefeld, F., Niehuis, O., Beutel, R.G. & Misof, B. (2014) The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evolutionary Biology, 14, 52.

    Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, G. & Baurain, D. (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology, 9, e1000602.

    Pinto, I.D. & de Ornellas, L.P. (1978) New fossil insects from the White Band Formation (Permian), South Africa. Pesquisas em Geociências, 10, 96–104.

    Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., Lartillot, N. & Wörheide, G. (2015) Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences, 112, 15402–15407.

    Richards, A.G. (1965) The proventriculus of adult Mecoptera and Siphonaptera. Entomological News, 76, 253–256.

    Richards, P.A. & Richards, A.G. (1969) Acanthae: a new type of cuticular process in the proventriculus of Mecoptera and Siphonaptera. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 86, 158–176.

    Rohdendorf, B.B. (1957) Basic trends in the historical development of the Diptera. Tezisy dokladov 2. soveshchaniya Vesesoyuznogo Entomologicheskogo Obshchestva, 1, 115–119.

    Ross, H. (1965) A textbook of entomology. 3rd ed. John Wiley and Sons, London, 539 pp.

    Rota-Stabelli, O., Lartillot, N., Philippe, H. & Pisani, D. (2013) Serine codon-usage bias in deep phylogenomics: Pancrustacean relationships as a case study. Systematic Biology, 62, 121–133.

    Rothschild, M.L., Schlein, J., Parker, K., Neville, C., Sternberg, S. & Pringle, J.W.S. (1975) The jumping mechanism of Xenopsylla cheopis III. Execution of the jump and activity. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 271, 499–515.

    Schrempf, D., Lartillot, N. & Szöllősi, G. (2020) Scalable empirical mixture models that account for across-site compositional heterogeneity. Molecular Biology and Evolution, msaa145.

    Schwentner, M., Combosch, D.J., Nelson, J.P. & Giribet, G. (2017) A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Current Biology, 27, 1818–1824.

    Sharov, A.G. (1966) Basic arthropodan stock, with special reference to insects. 1st ed. Pergamon Press, Oxford, 271 pp.

    Simiczyjew, B. (2002) Structure of the ovary in Nannochorista neotropica Navás (Insecta: Mecoptera: Nannochoristidae) with remarks on mecopteran phylogeny. Acta Zoologica, 83, 61–66.

    Simion, P., Philippe, H., Baurain, D., Jager, M., Richter, D.J., Di Franco, A., Roure, B., Satoh, N., Quéinnec, É., Ereskovsky, A., Lapébie, P., Corre, E., Delsuc, F., King, N., Wörheide, G. & Manuel, M. (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology, 27, 958–967.

    Song, F., Li, H., Jiang, P., Zhou, X., Liu, J., Sun, C., Vogler, A.P. & Cai, W. (2016) Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biology and Evolution, 8, 1411–1426.

    Tillyard, R.J. (1935) The evolution of the scorpion-flies and their derivatives (order Mecoptera). Annals of the Entomological Society of America, 28, 1–45.

    Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.

    Wheeler, W.C., Whiting, M., Wheeler, Q.D. & Carpenter, J.M. (2001) The phylogeny of the extant hexapod orders. Cladistics, 17, 113–169.

    Whiting, M. (2003) Phylogeny of the holometabolous insects. The most successful group of terrestrial organisms. In: Cracraft, J. & Donghue, M. (Eds). Assembling the Tree of Life. Oxford University Press, Oxford, pp. 345–364.

    Whiting, M., Whiting, A.S. & Hastriter, M.W. (2003) A comprehensive phylogeny of Mecoptera and Siphonaptera. Entomologische Abhandlungen, 61, 169.

    Whiting, M.F. (2002a) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31, 93–104.

    Whiting, M.F. (2002b) Phylogeny of the holometabolous insect orders: molecular evidence. Zoologica Scripta, 31, 3–15.

    Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. & Wheeler, W.C. (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.

    Whiting, M.F., Whiting, A.S., Hastriter, M.W. & Dittmar, K. (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics, 24, 677–707.

    Wiegmann, B.M., Trautwein, M.D., Kim, J.-W., Cassel, B.K., Bertone, M.A., Winterton, S.L. & Yeates, D.K. (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology, 7, 34.

    Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.-W., Lambkin, C., Bertone, M.A., Cassel, B.K., Bayless, K.M., Heimberg, A.M., Wheeler, B.M., Peterson, K.J., Pape, T., Sinclair, B.J., Skevington, J.H., Blagoderov, V., Caravas, J., Kutty, S.N., Schmidt-Ott, U., Kampmeier, G.E., Thompson, F.C., Grimaldi, D.A., Beckenbach, A.T., Courtney, G.W., Friedrich, M., Meier, R. & Yeates, D.K. (2011) Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences, 108, 5690–5695.

    Wille, A. (1960) The phylogeny and relationships between the insect orders. Revista de biologia tropical, 8, 93–123.

    Willmann, R. (2003) Die phylogenetischen beziehungen der Insecta: offene fragen und probleme. Verhandlungen Westdeutscher Entomologentag, 2001, 1–64.

    Wood, D.M. & Borkent, A. (1989) Phylogeny and classification of the Nematocera. In: McAlpine, J.F. & Wood, D.M. (Eds). Manual of Nearctic Diptera. Vol. 3. Research Branch, Agriculture Canada, Ottawa, pp. 1333–1370.

    Yoshizawa, K. & Johnson, K.P. (2010) How stable is the “polyphyly of lice” hypothesis (Insecta: Psocodea)? A comparison of phylogenetic signal in multiple genes. Molecular Phylogenetics and Evolution, 55, 939–951.

    Zhao, X., Wang, B., Bashkuev, A.S., Aria, C., Zhang, Q., Zhang, H., Tang, W. & Engel, M.S. (2020) Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 6, eaay1259.