Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-31
Page range: 353–359
Abstract views: 365
PDF downloaded: 14

On subfamily structure of the Cupedidae (Coleoptera, Archostemata): data from paleontology and an approach to solving conflicting classifications

Zoological Institute, Russian Academy of Sciences, Universitetskaya emb., 1, 199034 St. Petersburg, Russia
Cupedinae Ommatinae paleontological method principle of triple parallelism principle of multiple (multidimensional) parallelism Coleoptera Archostemata

Abstract

This paper demonstrates some of main differences between the systematic constructions based mostly on paleontological research and constructions involving the other approaches. Some reasons for these differences are discussed, together with an approach to solve contradictions between the conflicting hypotheses. The multiple (multidimensional) parallelism gives a possibility to solve many problems of phylogenetic interrelations due to reconstructions based on coincidence of patterns of changes (series of interconnected facts) traced in different aspects of evolutionary processes. This principle originates in the ideas by Jean Agassiz and Ernst Haeckel defined as the principle of triple parallelism. Other aspects of the evolution can be added to the morphology, embryology, and paleontology, initially included in this method. The molecular method is one of such aspects. It is shown that the potential resolution of the morphological and molecular approaches in some cases could be rather restricted, particularly applying ancient groups with main evolutionary transformations passed far in the past. The infraorder Cupediformia and suborder Archostemata in general are examples of such cases. It is advisable in the current research period that has followed the previous interpretation of the systematic structure of the family Cupedidae recognizing three subfamilies with not quite distinct hiatus between them (Cupedinae, Ommatinae and Triadocupedinae). Some recent morphological and molecular approaches proposed to divide the Cupedidae into two separate families on the basis of incomplete information accessible after study of only modern representatives, as most events in the family evolution occurred during the Palaeozoic and Mesozoic, and these events are scarcely possible to trace without considering fossils. As the principle of multiple parallelism cannot be currently used for archostematans to the full extent of its power, it is necessary to choose the paleontological method of phylogenetic reconstruction as crucial. This approach is preferable for groups that are well-documented through very diverse fossils, and for which only few of its remnants of the past diversity reached the modern epoque.

References

  1. Crowson, R.A. (1962) Observation on the beetle family Cupedidae, with description of two new fossil forms and a key to the recent genera. The Annals and Magazine Natural History, (13) 5, 147–157. https://doi.org/10.1080/00222936208651227
  2. Edwards, J.G. (1953a) The morphology of the male terminalia of beetles belonging to the genus Priacma (Cupesidae). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 29,1, 1–8.
  3. Edwards, J.G. (1953b) The peculiar clasping mechanisms of the phallus of males of Priacma (Cupesidae, or Cupedidae). The Coleopterist’s Bulletin, 7, 17–20. https://www.jstor.org/stable/3998771
  4. Jarzembowski, E.A. & Wang, B. (2016) An unusual basal beetle from Myanmar (Coleoptera: Archostemata). Alcheringa, 40, 297–302. https://doi.org/10.1080/03115518.2016.1132493
  5. Kirejtshuk, A.G. (1991) Evolution of mode of life as the basis for division of the beetles into groups of high taxonomic rank. In: Zunino, M., Belles, X. & Blas, M. (Eds), Advances in Coleopterology. AEC: Barcelona, Spain, pp. 249–261.
  6. Kirejtshuk, A.G. (2005) A revision of the genus Cupes Fabricius, 1801 from Baltic amber and some notes on taxonomy and composition of the family Cupedidae (Coleoptera, Archostemata). Mittetlungen der Bayerischen Staatssammlung für Paläontologie und Geologie, 89, 55–84.
  7. Kirejtshuk, A.G. (2020) Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: Superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10, 73. https://doi.org/10.3390/geosciences10020073
  8. Kirejtshuk, A.G. & Nel, A. (2013) Skleroptera, a new order of holometabolous insects (Insecta) from the Carboniferous. Zoosystematica Rossica, 22, 247–257. https://doi.org/10.31610/zsr/2013.22.2.247
  9. Kirejtshuk, A.G., Nel, A. & Kirejtshuk, P.A. (2016) Taxonomy of the reticulate beetles of the subfamily Cupedinae (Coleoptera: Archostemata), with a review of the historical development. Invertebrate Zoology, 13, 61–190. https://doi.org/10.15298/invertzool.13.2.01
  10. Kirejtshuk, A.G. & Ponomarenko, A.G. (2018) [Catalogue of fossil Coleoptera. In: Beetles (Coleoptera) and Coleopterologists.] Zoological Institute of the Russian Academy of Sciences, St. Petersburg. Updated May 2018 updated at [http://www.zin.ru/Animalia/Coleoptera/rus/paleosys.htm] [In Russian].
  11. Kirejtshuk, A.G., Poschmann, M., Prokop, J., Garrouste, R. & Nel, A. (2014) Evolution of the elytral venation and structural adaptations in the oldest Palaeozoic beetles (Insecta: Coleoptera: Tshekardocoleidae). Journal of Systematic Palaeontology, 12, 575–600. https://doi.org/10.1080/14772019.2013.821530
  12. Laporte [= Castelnau] F.L.N.C., de (1836) Études entomologiques, ou descriptions d’insectes nouveaux et observations sur la synonymie [continued]. Revue Entomologique, 4, 5–60.
  13. Lawrence, J.F., Ślipiński, A., Ainsley, E., Seago, A., Thayer, M.K., Newton, A.F. & Marvaldi, A.E. (2011) Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annali Zoologici, 61, 1–217. https://doi.org/10.3161/000345411X576725
  14. Li, Y.D. & Cai, C.Y. (2019) Early evolution of Cupedidae revealed by a mid-Cretaceous reticulated beetle from Myanmar (Coleoptera: Archostemata). Systematic Entomology, 44, 777–786. https://doi.org/10.1111/syen.12355
  15. Li, Y.D., Tihelka, E., Yamamoto, Sh., Huang, D.Y. & Cai, C.Y. (2020) A close affinity of the enigmatic genus Stegocoleus with Lepidomma revealed by new fossil evidence (Coleoptera: Archostemata: Ommatidae). Palaeoentomology, 3 (6), 632–640. Https://doi.org/10.11646/palaeoentomology.3.6.15
  16. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 116, 49, 24729–24737. https://doi.org/10.1073/pnas.1909655116
  17. McKenna, D.D., Wild, A.L., Kanda, K., Bellamy, C.L., Beutel, R.G., Caterino, M.S., Farnum, C.W., Hawks, D.C., Ivie, M.A., Jameson, M.L., Leschen, R.A.B., Marvaldi, A.E., McHugh, J.V., Newton, A.F., Robertson, J.A., Thayer, M.K., Whiting, M.F., Lawrence, J.F., Ślipiński, A., Maddison, D.R. & Farrell, B.D. (2015) The beetle tree of life reveals that Coleoptera survived end Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40, 4, 835–880. https://doi.org/10.1111/syen.12132
  18. Martynov, A.V. (1926) [To the knowledge of fossil insects from Jurassic beds in Turkestan 5. On some interesting Coleoptera]. Ezhegodnik Russkogo Paleontologicheskogo Obshestva, 5, 1–39 [In Russian and English].
  19. Nel, A., Roques, P., Nel, P., Prokin, A.A., Bourgoin, T., Prokop, J., Szwedo, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., Garrouste, R., Coty, D., Huang, D.Y., Engel, M.S. & Kirejtshuk, A.G. (2013) The earliest-known holometabolous insects. Nature, 503, 257–261. 15 pp. + Suppl. Information, 14 pp. https://doi.org/10.1038/nature12629
  20. Parham, J.F., Donoghue, P.C.J., Bell, C.J., Calway, T.D., Head, J.J., Holroyd, P.A., Inoue, J.G., Irmis, R.B., Joyce, W.G., Ksepka, D.T., Patané, J.S.L., Smith, N.D., Tarver, J.E., Tuinen, M. van, Yang, Z., Angielczyk, K.D., Greenwood, J.M., Hipsley, C.A., Jacobs, L., Makovicky, P.J., Müller, J., Smith, K.T., Theodor, J.M., Warnock, R.C.M. & Benton M.J. (2012) Best practices for justifying fossil calibrations. Systematic Biology, 61, 346–359. https://doi.org/10.1093/sysbio/syr107
  21. Ponomarenko, A.G. (1963) [Palaeozoic beetles of Cupididea of the European Part of the USSR]. Paleontologhicheskiy Zhurnal, 1, 70–85 [In Russian].
  22. Ponomarenko, A.G. (1964) [New beetles of the family Cupedidae from Jurassic deposits of Karatau]. Paleontologhicheskiy Zhurnal, 2, 49–62 [In Russian].
  23. Ponomarenko, A.G. (1966a) [Beetles of the family Cupedidae from the Middle Triassic of Middle Asia]. Paleontologhicheskiy Zhurnal, 4, 47–68 [In Russian].
  24. Ponomarenko, A.G. (1966b) [New beetles of the family Cupedidae (Coleoptera) from Mesozoic deposits of Transbaikalia]. Entomologicheskoe Obozrenie, 45, 138–143 [In Russian].
  25. Ponomarenko, A.G. (1968) Jurassic Archostematan beetles from Karatau (Coleoptera, Archostemata). In: Yurskie nasekomye Karatau. Nauka: Moscow, Russia; pp. 137–139 [In Russian].
  26. Ponomarenko, A.G. (1969) [Historical development of the Archostomatan beetles]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 125, 240 pp [In Russian].
  27. Rohdendorf, B.B. (1956) [Palaeozoic insects of Southern Siberia]. Entomologicheskoe Obozrenie, 35, 3, 611–619 [In Russian with French abstract].
  28. Rohdendorf, B.B. (1961) [Superorder Coleopteroidea. Paleozoic insects Kuznetsk Basin]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 85, 393–469 [In Russian].
  29. Rohdendorf, B.B. & Ponomarenko, A.G. (1962) [Order Coleoptera, beetles]. In: Osnovy Paleontologii. Spravochnik dlya paleontologov i geologov SSSR. Chlenistonogie, Trakheinye i Khelitserovye. (Rohdendorf, B.B., Ed.) Izdatel’stvo Akademii Nauk SSSR: Moscow, 560 pp [In Russian].
  30. Sharp, D. & Muir, F. (1912) The comparative anatomy of the male genital tube in Coleoptera. The Transactions of the Entomological Society of London, 3, 477–642, pls. 42–78. https://doi.org/10.1111/j.1365-2311.1912.tb03107.x
  31. Tan, J.J. & Ren, D. (2009) Mesozoic Archostematan fauna from China. Science Press: Beijing, China, 1–347. [In Chinese with English summary].
  32. Tong, K.J., Duchêne, S., Ho, S.Y.W., Lo, N. (2015) Comment on “Phylogenomics resolves the timing and pattern of insect evolution”. Science, 349, 6247, 487. https://doi.org/10.1126/science.aaa5460
  33. Toussaint, E.A., Seidel, M., Arriga-Varela, E., Hájek, J., Král, D., Sekerka, L., Short, A.Z. & Fikăcek, M. (2017) The peril of dating beetles. Systematic Entomology, 42, 1–10. https://doi.org/10.1111/syen.12198
  34. Yan, E.V., Beutel, R.G., Lawrence, J.F., Yavorskaya, M.I., Hörnschemeyer, T., Pohl, H., Vassilenko, D.V., Bashkuev, A.S. & Ponomarenko, A.G. (2019) Archaeomalthus (Coleoptera, Archostemata) a ‘ghost adult’ of Micromalthidae from Upper Permian deposits of Siberia? Historical Biology, 32, 8, 1019–1027. https://doi.org/10.1080/08912963.2018.1561672
  35. Zeuner, F. (1933) Die Stammesgeschichte der Käfer. Uber die Beziehungen der Form der Organe zu ihrer Funktion 1. Paläontologische Zeitschrift, 15, 280–311. https://doi.org/10.1007/BF03041657
  36. Zeuner, F.E. (1962) Fossil insects from the Lower Lias of Charmouth, Dorset. Bulletin of the British Museum (Natural History), Geology, 7, 155–171.