Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-31
Page range: 390–404
Abstract views: 621
PDF downloaded: 387

The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber

Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Buprestidae Cerambycidae Burmese amber Cretaceous Kachin amber

Abstract

Interactions between animals and plants represent an important driver of evolution. Especially the group Insecta has an enormous impact on plants, e.g., by consuming them. Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are therefore called wood-borer larvae or borers. While adults of these beetle groups are well known in the fossil record, there are barely any fossils of the corresponding larvae. We report here four new wood-borer larvae from Cretaceous Kachin amber (Myanmar, ca. 99 Ma). To compare these fossils with extant wood-borer larvae, we reconstructed the body outline and performed shape analysis via elliptic Fourier transformation and a subsequent principal component analysis. Two of the new larvae plot closely together and clearly in the same area as modern representatives of Buprestidae. As they furthermore lack legs, they are interpreted as representatives of Buprestidae. The other two new larvae possess legs and plot far apart from each other. They are more difficult to interpret; they may represent larvae of early offshoots of either Cerambycidae or Buprestidae, which still retain longer legs. These findings represent the earliest fossil record of larvae of Buprestidae and possibly of Cerambycidae known to date.

References

  1. Alekseev, A.V. (1993) Jurassic and Lower Cretaceous Buprestidae (Coleoptera) from Eurasia. Paleontological Journal, 27 (1A), 9–34.
  2. Alekseev, V.I. & Vitali, F. (2020) Description of the first extinct member of the tribe Anaglyptini (Coleoptera: Cerambycidae) from European Tertiary. Zootaxa, 4816 (1), 135–143. https://doi.org/10.11646/zootaxa.4816.1.11
  3. Alexeev, A.V. (1999) A survey of Mesozoic buprestids (Coleoptera) from Eurasian deposits. In: AMBA projects AM/PFICM98/1.99. Proceedings of the First International Palaeoentomological Conference, Moscow 1998, 5–9.
  4. Alexeev, A.V. (2000) On Mesozoic Buprestids (Coleoptera: Buprestidae) from Russia, Kazakhstan, and Mongolia. Paleontological Journal C/C Of Paleontologicheskii Zhurnal, 34 (SUPP/3), S323–S326.
  5. Bachofen-Echt, A. (1949) Der Bernsteine und seine Einschlüsse. Springer-Verlag, Wien, 204 pp. (reprint by Jörg Wunderlich Verlag 1996). https://doi.org/10.1007/978-3-7091-2303-4
  6. Badano, D., Engel, M.S., Basso, A., Wang, B. & Cerretti, P. (2018) Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 9, 3257. https://doi.org/10.1038/s41467-018-05484-y
  7. Badano, D., Fratini, M., Maugeri, L., Palermo, F., Pieroni, N., Cedola, A., Haug, J.T., Weiterschan, T., Velten, J., Mei, M., Di Giulio, A. & Cerretti, P. (2021) X-ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 46, 672–684. https://doi.org/10.1111/syen.12482
  8. Baranov, V., Hoffeins, C., Hoffeins, H.-W. & Haug, J.T. (2019) More than dead males: reconstructing the ontogenetic series of terrestrial non-biting midges from the Eocene amber forest. Bulletin of Geosciences, 94, 187–199. https://doi.org/10.3140/bull.geosci.1739
  9. Bellamy, C.L. (1995) Buprestidae (Coleoptera) from amber deposits: A brief review and family switch. The Coleopterists’ Bulletin, 49, 175–177.
  10. Bellamy, C.L. (1999) A new species of Buprestidae (Coleoptera) from Dominican amber. The Coleopterists’ Bulletin, 53, 321–323.
  11. Bellamy, C.L. (2008–2009) A world catalogue and bibliography of the jewel beetles (Coleoptera: Buprestoidea). Pensoft Series Faunistica No. 76. Pensoft Publishers, Sofia, Moscow, 1–5, 3264 pp.
  12. Bellamy, C.L. & Volkovitsh, M.G. (2005) Chapter 17. Buprestoidea Crowson, 1955. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Handbuch der Zoologie/Handbook of Zoology, Volume IV, Arthropoda: Insecta, Part 38, Coleoptera, Beetles, Volume 1: Morphology and systematics. W. de Gruyter, Berlin, New York, pp. 461–468.
  13. Bongers, T., van der Meulen, H. & Korthals, G. (1997) Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6 (2), 195–199. https://doi.org/10.1016/S0929-1393(96)00136-9
  14. Braig, F., Haug, J.T., Schädel, M. & Haug, C. (2019) A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 12, 69–87. https://doi.org/10.18476/pale.v12.a6
  15. Cai, C.Y., Ślipiński, A. & Huang, D.Y. (2015) First false jewel beetle (Coleoptera: Schizopodidae) from the Lower Cretaceous of China. Cretaceous Research, 52, 490–494. https://doi.org/10.1016/j.cretres.2014.03.028
  16. Chang, H.L., Muona, J., Pu, H.Y., Xu, L., Wang, C., Teräväinen, M., Ren, D., Yang, Q., Zhang, X.L. & Jia, S.H. (2016) Chinese Cretaceous larva exposes a southern Californian living fossil (Insecta, Coleoptera, Eucnemidae). Cladistics, 32, 211–214. https://doi.org/10.1111/cla.12124
  17. Chiappini, E. & Nicoli Aldini, N. (2011) Morphological and physiological adaptations of wood-boring beetle larvae in timber. Journal of Entomological and Acarological Research, 43 (2), 47–59. https://doi.org/10.4081/jear.2011.47
  18. Connell, J., Hinterstoisser, W. & Hoch, G. (2020) Notes on the larval morphology of Trichoferus campestris (Coleoptera, Cerambycidae), a wood borer frequently intercepted in wood packaging material. EPPO Bulletin, 50 (2), 316–321. https://doi.org/10.1111/epp.12668
  19. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  20. Ding, Q., Labandeira, C.C. & Ren, D. (2014) Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of north-eastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Systematics & Phylogeny, 72, 281–308.
  21. Dylewski, Ł., Ortega, Y.K., Bogdziewicz, M. & Pearson, D.E. (2020) Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecology Letters, 23 (6), 1024–1033. https://doi.org/10.1111/ele.13499
  22. Eggleton, P. & Gaston, K.J. (1990) “Parasitoid” species and assemblages: Convenient definitions or misleading compromises? Oikos, 59, 417–421. https://doi.org/10.2307/3545155
  23. Evans, H.F., Moraal, L.G. & Pajares, J.A. (2007) Chapter 20. Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. & Evans, H.F (Eds), Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp. 447–474. https://doi.org/10.1007/1-4020-2241-7_20
  24. Germar E.F. (1839) Die versteinerten Insecten Solenhofens. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, 19 (1), 187–222.
  25. Grebennikov, V.V. (2013) Life in two dimensions or keeping your head down: Lateral exuvial splits in leaf-mining larvae of Pachyschelus (Coleoptera: Buprestidae) and Cameraria (Lepidoptera: Gracillariidae). European Journal of Entomology, 110, 165–172. https://doi.org/10.14411/eje.2013.024
  26. Grimaldi, D. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, Cambridge, 755 pp.
  27. Gröhn, C. (2015) Einschlüsse im baltischen Bernstein. Wachholtz Verlag, Kiel, 424 pp.
  28. Haug, C., Mayer, G., Kutschera, V., Waloszek, D., Maas, A. & Haug, J.T. (2011) Imaging and documenting gammarideans. International Journal of Zoology, 2011, art. 380829. https://doi.org/10.1155/2011/380829
  29. Haug, C., Shannon, K.R., Nyborg, T. & Vega, F.J. (2013) Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda. Bolétin de la Sociedad Geológica Mexicana, 65, 273–284. https://doi.org/10.18268/BSGM2013v65n2a9
  30. Haug, C., Herrera-Flórez, A.F., Müller, P. & Haug, J.T. (2019a) Cretaceous chimera—an unusual 100-million-year old neuropteran larva from the “experimental phase” of insect evolution. Palaeodiversity, 12, 1–11. https://doi.org/10.18476/pale.v12.a1
  31. Haug, G.T., Baranov, V., Wizen, G., Pazinato, P.G., Müller, P., Haug, C. & Haug, J.T. (2021a) The morphological diversity of long-necked lacewing larvae (Neuroptera: Myrmeleontiformia). Bulletin of Geosciences, 96.
  32. Haug, G.T., Haug, C. & Haug J.T. (2021b) The morphological diversity of spoon-winged lacewing larvae and the first possible fossils from 99 million-year-old Kachin amber, Myanmar. Palaeodiversity, 14, 133–152. https://doi.org/10.18476/pale.v14.a6
  33. Haug, J.T. & Haug, C. (2019) Beetle larvae with unusually large terminal ends and a fossil that beats them all (Scraptiidae, Coleoptera). PeerJ, 7, e7871. https://doi.org/10.7717/peerj.7871
  34. Haug, J.T. & Haug, C. (2021) A 100 million-year-old armoured caterpillar supports the early diversification of moths and butterflies. Gondwana Research, 93, 101–105. https://doi.org/10.1016/j.gr.2021.01.009
  35. Haug, J.T., Haug, C. & Ehrlich, M. (2008) First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). Palaeodiversity, 1, 103–109.
  36. Haug, J.T., Haug, C., Maas, A., Fayers, S.R., Trewin, N.H. & Waloszek, D. (2009) Simple 3D images from fossil and Recent micromaterial using light microscopy. Journal of Microscopy, 233, 93–101. https://doi.org/10.1111/j.1365-2818.2008.03100.x
  37. Haug, J.T., Müller, P. & Haug, C. (2019b) A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters, 5, 29. https://doi.org/10.1186/s40851-019-0144-0
  38. Haug, J.T., Müller, P. & Haug, C. (2019c) A 100-million-year old slim insectan predator with massive venom-injecting stylets—a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences, 94, 431–440. https://doi.org/10.3140/bull.geosci.1753
  39. Haug, J.T., Müller, P. & Haug, C. (2020a) A 100 million-year-old snake-fly larva with an unusually large antenna. Bulletin of Geosciences, 95, 167–177. https://doi.org/10.3140/bull.geosci.1757
  40. Haug, J.T., Schädel, M., Baranov, V.A. & Haug, C. (2020b) An unusual 100-million-year old holometabolan larva with a piercing mouth cone. PeerJ, 8, e8661. https://doi.org/10.7717/peerj.8661
  41. Heithaus, E.R. (1981) Seed predation by rodents on three ant-dispersed plants. Ecology, 62(1), 136–145. https://doi.org/10.2307/1936677
  42. Heppner, J.B. (1993) Citrus leafminer, Phyllocnistis citrella, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Tropical Lepidoptera, 4, 49–64.
  43. Hernández, J.M. & de la Rosa, J.J. (2001) Description of larva and pupa of Plagionotus scalaris (Brullé, 1832) and distinctive host plant for Central Spain populations (Coleoptera, Cerambycidae, Cerambycinae). Deutsche Entomologische Zeitschrift, 48 (2), 267–271. https://doi.org/10.1002/mmnd.4800480204
  44. Hörnschemeyer, T. (2016) 5.3 Micromalthidae, Barber, 1913. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Volume 1 Coleoptera, Beetles, Morphology and systematics, Handbook of Zoology. De Gruyter, Berlin, Boston, pp. 48–52.
  45. Iwata, H. & Ukai, Y. (2002) SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384–385. https://doi.org/10.1093/jhered/93.5.384
  46. Janzen, D.H. (1971) Seed predation by animals. Annual Review of Ecology and Systematics, 2 (1), 465–492. https://doi.org/10.1146/annurev.es.02.110171.002341
  47. Janzen, D.H. (1975) Interactions of seeds and their insect predators/parasitoids in a tropical deciduous forest. In Evolutionary strategies of parasitic insects and mites. Springer, Boston, MA. pp. 154–186. https://doi.org/10.1007/978-1-4615-8732-3_8
  48. Jiang, R., Song, H., Zhang, H. & Wang, S. (2021) Burmagrilus cretacus gen. et sp. nov., the first Buprestidae from mid-Cretaceous Burmese amber. Cretaceous Research, 125, 104866. https://doi.org/10.1016/j.cretres.2021.104866
  49. Kergoat, G.J., Meseguer, A.S. & Jousselin, E. (2017) Evolution of plant—insect interactions: insights from macroevolutionary approaches in plants and herbivorous insects. Advances in Botanical Research, 81, 25–53. https://doi.org/10.1016/bs.abr.2016.09.005
  50. Kerp, H. & Bomfleur, B. (2011) Photography of plant fossils—new techniques, old tricks. Review of Palaeobotany and Palynology, 166, 117–151. https://doi.org/10.1016/j.revpalbo.2011.05.001
  51. Kirejtshuk, A.G. & Azar, D. (2008) New taxa of beetles (Insecta, Coleoptera) from Lebanese amber with evolutionary and systematic comments. Alavesia, 2, 15–46.
  52. Kirkendall, L., Biedermann, P.H.W. & Jordal, B. (2015) Chapter 3: Evolution and diversity of bark and ambrosia beetles. In: Vega, F.E. & Hofstetter, R.W. (Eds), Bark beetles: biology and ecology of native and invasivesSpecies. Academic Press, Cambridge. pp. 85–156. https://doi.org/10.1016/B978-0-12-417156-5.00003-4
  53. Kumar, Y. & Yadav, B.C. (2020) Plant-parasitic nematodes: Nature’s most successful plant parasite. International Journal of Research and Review, 7, 379–386.
  54. Labandeira, C.C. & Li, L. (2021) The history of insect parasitism and the Mid-Mesozoic parasitoid revolution. The evolution and fossil record of parasitism: Identification and macroevolution of parasites. Topics in Geobiology, 49, 377–533. https://doi.org/10.1007/978-3-030-42484-8_11
  55. Larsson, S.G. (1978) Baltic amber: a palaeobiological study. Scandinavian Science Press, Klampenborg, Denmark, 192 pp.
  56. Li, H., Chang, H., Muona, J., Zhao, Y. & Ren, D. (2021) Subfamily Anischiinae (Coleoptera: Eucnemidae) in early Cretaceous of Northeast China. Insects, 12, 105. https://doi.org/10.3390/insects12020105
  57. Lin, M.Y. & Bai, M. (2017) Qitianniu zhihaoi gen. et sp. nov.: The first cerambycid beetle found in Cretaceous Burmese amber (Coleoptera: Chrysomeloidea). Cretaceous Research, 75, 173–178. https://doi.org/10.1016/j.cretres.2017.03.030
  58. Liu, X.Y., Zhang, W.W., Winterton, S.L., Breitkreuz, L.C.V. & Engel, M.S. (2016) Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology, 26, 1590–1594. https://doi.org/10.1016/j.cub.2016.04.039
  59. Liu, X.Y., Shi, G.L., Xia, F.Y., Lu, X.M., Wang, B. & Engel, M.S. (2018) Liverwort mimesis in a Cretaceous lacewing larva. Current Biology, 28, 1475–1481. https://doi.org/10.1016/j.cub.2018.03.060
  60. Lopez-Vaamonde, C., Kirichenko, N. & Oshima, I. (2021) Chapter 17: Collecting, rearing, and preserving leaf-mining insects. In: Santos, J.C. & Fernandes, G.W. (Eds). Measuring arthropod biodiversity. Springer Nature Switzerland, Cham, pp. 439–465. https://doi.org/10.1007/978-3-030-53226-0_17
  61. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116
  62. Metcalf, R.L. (1996) Applied entomology in the twenty-first century. American Entomologist, 42, 216–227. https://doi.org/10.1093/ae/42.4.216
  63. Molino-Olmedo, F. (2011) Redescripción de la espèce fosíl Karatausia maculata Alekseev, 1993 (Coleoptera, Buprestidae). Lambillionea, 111, 1, 1–4.
  64. Muona, J. (2010) Eucnemidae Eschscholtz, 1829. In: Leschen, R.A.B., Beutel, R.G., Lawrence, J.F. (Eds), Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles, Vol. 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter, Berlin and New York, pp. 61–69. https://doi.org/10.1515/9783110911213.61
  65. Muona, J. & Teräväinen, M. (2020) A re-evaluation of the Eucnemidae larval characters (Coleoptera). Papéis Avulsos de Zoologia, 60, art. e202060(s.i.).28. https://doi.org/10.11606/1807-0205/2020.60.special-issue.28
  66. Normark, B.B. (2013) Micromalthus debilis. Current Biology, 23, R430–R431. https://doi.org/10.1016/j.cub.2013.02.045
  67. Oberprieler, R.G., Ashman, L.G., Frese, M. & Sìlipinìski, A. (2016) The first elateroid beetles (Coleoptera: Polyphaga: Elateroidea) from the Upper Jurassic of Australia. Zootaxa, 4147 (2), 177–191. https://doi.org/10.11646/zootaxa.4147.2.5
  68. Oliveira, C.M., Auad, A.M., Mendes, S.M. & Frizzas, M.R. (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection, 56, 50–54. https://doi.org/10.1016/j.cropro.2013.10.022
  69. Ortuño, V.M. & Arillo, A. (2000) Presencia del género Dicerca (Coleoptera, Buprestidae) en el Mioceno Superior de la depresión ceretana (Lleida, NE de España). Acta Geológica Hispánica, 35 (1), 189–193.
  70. Pan, X., Chang, H., Ren, D. & Shih, C. (2011) The first fossil buprestids from the Middle Jurassic Jiulongshan Formation of China (Coleoptera: Buprestidae). Zootaxa, 2745 (1), 53–62. https://doi.org/10.11646/zootaxa.2745.1.4
  71. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E., Speranza, M., Wierzchos, J., Ascaso, C. & Engel, M.S. (2012) Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences, 109, 21414–21419. https://doi.org/10.1073/pnas.1213775110
  72. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E. & Engel, M.S. (2016) A defensive behavior and plant-insect interaction in Early Cretaceous amber—the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Structure and Development, 45, 133–139. https://doi.org/10.1016/j.asd.2015.08.002
  73. Peìrez-de la Fuente, R., PenÞalver, E., Azar, D. & Engel, M.S. (2018) A soil-carrying lacewing larva in Early Cretaceous Lebanese amber. Scientific Reports, 8, art. 16663. https://doi.org/10.1038/s41598-018-34870-1
  74. Pérez-de la Fuente, R., Engel, M.S., Azar, D. & Peñalver, E. (2019) The hatching mechanism of 130-million-year-old insects: an association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology, 62, 547–559. https://doi.org/10.1111/pala.12414
  75. Perotti, M.A., Young, D.K. & Braig, H.R. (2016) The ghost sex-life of the paedogenetic beetle Micromalthus debilis. Scientific Reports, 6, art. 27364. https://doi.org/10.1038/srep27364
  76. Peterson, A. (1957) Larvae of Insects. An Introduction to Nearctic Species. Part II. Coleoptera, Diptera, Neuroptera, Siphonaptera, Mecoptera, Trichoptera. Larvae of Insects. An Introduction to Nearctic Species. Edward Brothers, Columbus, 416 pp.
  77. Pollock, D.A. & Normark, B.B. (2002) The life cycle of Micromalthus debilis LeConte (1878)(Coleoptera: Archostemata: Micromalthidae): historical review and evolutionary perspective. Journal of Zoological Systematics and Evolutionary Research, 40, 105–112. https://doi.org/10.1046/j.1439-0469.2002.00183.x
  78. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007
  79. Poulin, R. (2011) The many roads to parasitism: a tale of convergence. Advances in Parasitology, 74, 1–40. https://doi.org/10.1016/b978-0-12-385897-9.00001-x
  80. Powney, G.D., Carvell, C., Edwards, M., Morris, R.K., Roy, H.E., Woodcock, B.A. & Isaac, N.J. (2019) Widespread losses of pollinating insects in Britain. Nature Communications, 10, art. 1018. https://doi.org/10.1038/s41467-019-08974-9
  81. Price, P.W. (1980) Evolutionary Biology of Parasites.(MPB-15), Volume 15. Princeton University Press, Princeton, 256 pp.
  82. Prokhorov, A.V. & Vasilyeva, J.S. (2017) Description of the Larva of Agrilus antiquus croaticus (Coleoptera, Buprestidae). Vestnik zoologii, 51 (1), 3–8. https://doi.org/10.1515/vzoo-2017-0001
  83. Ross, A.J. (2021) Burmese (Myanmar) amber taxa, on-line supplement v.2021.1. 27pp.
  84. http://www.nms.ac.uk/explore/stories/natural-world/burmese-amber/
  85. Schmidt, M., Liu, Y., Zhai, D., Hou, X. & Melzer, R.R. (2021) Moving legs: A workflow on how to generate a flexible endopod of the 518 million-year-old Chengjiang arthropod Ercaicunia multinodosa using 3D-kinematics (Cambrian, China). Microscopy Research and Technique, 84, 695–704. https://doi.org/10.1002/jemt.23628
  86. Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q. & Li, X. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  87. Simov, N., Langourov, M., Sakalian, V. & Bozukov, V. (2021) First fossil jewel beetle (Insecta: Coleoptera: Buprestidae) from Middle Miocene deposits in Bulgaria. Historia Naturalis Bulgarica, 42 (5), 31–34. https://doi.org/10.48027/hnb.42.052
  88. Spahr, U. (1981) Bibliographie der Bernstein-und Kopal-Käfer (Coleoptera). Stuttgarter Beiträge zur Naturkunde, Serie B, 80, 1–107.
  89. Svacha, P. & Lawrence, J.F. (2014) 2.4. Cerambycidae Latreille, 1802. Volume 3. In: Leschen, R.A.B. & Beutel, R.G. (Eds), Morphology and Systematics. De Gruyter, Berlin, München, Boston, 77–177 pp.
  90. Swisher, C.C. III, Wang, Y.Q., Wang, X.L., Xu, X. & Wang, Y. (1999) Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400, 58–61. https://doi.org/10.1038/21872
  91. Topalović, O., Hussain, M. & Heuer, H. (2020) Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Frontiers in Microbiology, 11, art. 313. https://doi.org/10.3389/fmicb.2020.00313
  92. Vitali, F. (2005) Notes about the European fossil Lepturinae and the description of a new species (Coleoptera, Cerambycidae, Lepturinae). Lambillionea, CV, 4, 530–538.
  93. Vitali, F. (2009a) The cerambycids included in Baltic amber: current knowledge status with the description of new taxa (Coleoptera, Cerambycidae). Denisia, 26, 231–242.
  94. Vitali, F. (2009b) About some interesting fossil and sub-fossil cerambycids of the collection Velten (Coleoptera, Cerambycidae). Lambillionea, CIX, 352–357.
  95. Vitali, F. (2009c) Two new longhorned beetles from Dominican amber (Coleoptera: Cerambycidae). Denisia, 26, 223–230.
  96. Vitali, F. (2014) New fossil cerambycids (Coleoptera: Cerambycidae) from Baltic amber belonging to the collection Hoffeins. Baltic Journal of Coleopterology, 14 (1), 103–112.
  97. Vitali, F. (2016) Eurapatophysis groehni n. gen. and n. sp. (Coleoptera: Cerambycidae) from Baltic amber: the first fossil member of the tribe Apatophyseini Lacordaire, 1869. Baltic Journal of Coleopterology, 16 (2), 117–122.
  98. Vitali, F. (2019) Systematic notes on the Cerambycidae (Insecta: Coleoptera) described from Burmese amber. Palaeoentomology, 2 (3), 215–218. https://doi.org/10.11646/palaeoentomology.2.3.3
  99. Volkovitsh, M.G. & Bílý, S. (2015) Larvae of Australian Buprestidae (Coleoptera). Part 5. Genera Astraeus and Xyroscelis, with notes on larval characters of Australian polycestine taxa. Acta Entomologica Musei Nationalis Pragae, 55, 173–202.
  100. Wang, B., Ma, J., McKenna, D.D., Yan, E.V., Zhang, H. & Jarzembowski, E.A. (2014) The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea. Journal of Systematic Palaeontology, 12, 565–574. https://doi.org/10.1080/14772019.2013.806602
  101. Whalley, E.S. & Jarzembowski, E.A. (1985) Fossil insects from the Lithographic Limestone of Montsech (late Jurassic-early Cretaceous), Lérida Province, Spain. Bulletin of the British Museum of Natural History (Geology), 38, 381–412. https://doi.org/10.5962/bhl.part.5051
  102. Windsor, D.A. (1998) Controversies in parasitology: Most of the species on Earth are parasites. International Journal for Parasitology, 28, 1939–1941. https://doi.org/10.1016/s0020-7519(98)00153-2
  103. Wu, Y., Trepanowski, N.F., Molongoski, J.J., Reagel, P.F., Lingafelter, S.W., Nadel, H., Myers, S.W. & Ray, A.M. (2017) Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology. Scientific Reports, 7, art. 40316. https://doi.org/10.1038/srep40316
  104. Yu, T.T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116, 11345–11350. https://doi.org/10.1073/pnas.1821292116
  105. Yu, Y.L., Ślipiński, A., Shih, C.K., Pang, H. & Ren, D. (2013) A new fossil jewel beetle (Coleoptera: Buprestidae) from the Early Cretaceous of Inner Mongolia, China. Zootaxa, 3637 (3), 355–360. https://doi.org/10.11646/zootaxa.3637.3.7
  106. Yu, Y.L., Ślipiński, A., Reid, C., Shih, C.K., Pang, H. & Ren, D. (2015) A new longhorn beetle (Coleoptera: Cerambycidae) from the Early Cretaceous Jehol Biota of western Liaoning in China. Cretaceous Research, 52, 453–460. https://doi.org/10.1016/j.cretres.2014.02.019