Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-12-23
Page range: 524–536
Abstract views: 316
PDF downloaded: 19

Steinkern spiders: A microbial mat-controlled taphonomic pathway in the Oligocene Aix-en-Provence Lagerstätte, France

Department of Geology, University of Kansas, Lawrence, KS 66045, USA
Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA; X-ray Microanalysis Laboratory, University of Missouri, Columbia, MO 65211, USA
Department of Geology, University of Kansas, Lawrence, KS 66045, USA; Natural History Museum, Cromwell Road, London SW7 5BD, UK
Department of Geology, University of Kansas, Lawrence, KS 66045, USA
taphonomy spiders microbial mat preservation lacustrine

Abstract

The Aix-en-Provence Formation is an Oligocene (22.5 Ma) Lagerstätte in southern France that contains an abundance of soft-bodied fossils preserved in exceptional detail. Many taxa have been described from this formation, including insects, spiders, fishes, and plants, suggesting a diverse ecosystem in a subtropical, brackish, lacustrine paleoenvironment. Fossil spiders from this deposit are preserved as compression fossils and internal and external molds. Recently, compression fossils of spiders from Aix-en-Provence were hypothesized to be a product of a taphonomic pathway based on diatoms and sulfurization. Here, we examine fossil spiders preserved as molds to uncover a second taphonomic pathway based on microbial mats. Evidence of microbial mats include wrinkles, pustular textures, and possible microbial mat chips on the bedding surfaces as well as a matrix fabric that contains possible microbial sheaths and bacterial spherules. The evidence presented here supports prolific microbial mat communities during deposition of the Aix-en-Provence Formation, and suggests that they are likely responsible for the moldic preservation of the spiders. Our work shows that the paleoenvironment of the Aix-en-Provence Formation promoted at least two possible taphonomic pathways that resulted in the differing modes of preservation observed.

References

  1. Allison, P.A. (1988) Konservat-Lagerstätten: cause and classification. Paleobiology, 14, 331–344. https://doi.org/10.1017/S0094837300012082

  2. Allison, P.A. & Briggs, D.E.G. (1993) Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 21, 527–530. https://doi.org/10.1130/0091-7613(1993)021<0527:EFRDOS>2.3.CO;2

  3. Barling, N., Martill, D.M. & Heads, S.W. (2020) A geochemical model for the preservation of insects in the Crato Formation (Lower Cretaceous) of Brazil. Cretaceous Research, 116, 104608. https://doi.org/10.1016/j.cretres.2020.104608

  4. Briggs, D.E.G. (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annual review of earth and planetary sciences, 31, 275–301. https://doi.org/10.1146/annurev.earth.31.100901.144746

  5. Briggs, D.E. & Kear, A.J. (1993) Fossilization of soft tissue in the laboratory. Science, 259, 1439–1442. https://doi.org/10.1126/science.259.5100.1439

  6. Chafetz, H.S. & Buczynski, C. (1992) Bacterially induced lithification of microbial mats. Palaios, 7, 277–293. https://doi.org/10.2307/3514973

  7. Chan, C.S., McAllister, S.M., Leavitt, A.H., Glazer, B.T., Krepski, S.T. & Emerson, D. (2016) The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments. Frontiers in Microbiology, 7, 796. https://doi.org/10.3389/fmicb.2016.00796

  8. Cohen, A.S. (2003) Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, 528 pp. https://doi.org/10.1093/oso/9780195133530.001.0001

  9. Collomb, F.-M., Nel, A., Fleck, G. & Waller, A. (2008) March flies and European Cenozoic palaeoclimates (Diptera: Bibionidae). Annales de la Société entomologique de France, Société entomologique de France, 44, 161–179. https://doi.org/10.1080/00379271.2008.10697553

  10. Darroch, S.A.F., Laflamme, M., Schiffbauer, J.D. & Briggs, D.E.G. (2012) Experimental formation of a microbial death mask. Palaios, 27, 293–303. https://doi.org/10.2110/palo.2011.p11-059r

  11. DeFarge, C., Trichet, J., Jaunet, A.-M., Robert, M., Tribble, J. & Sansone, F.J. (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. Journal of Sedimentary Research, 66, 935–947. https://doi.org/10.1306/D4268446-2B26-11D7-8648000102C1865D

  12. Dias, J.J. & Carvalho, I. de S. (2022) The role of microbial mats in the exquisite preservation of Aptian insect fossils from the Crato Lagerstätte, Brazil. Cretaceous Research, 130, 105068. https://doi.org/10.1016/j.cretres.2021.105068

  13. Downen, M.R. & Selden, P.A. (2021) The earliest palpimanid spider (Araneae: Palpimanidae), from the Crato Fossil-Lagerstätte (Cretaceous, Brazil). Arachnologische Mitteilungen, 49, 91–97. https://doi.org/10.1636/JoA-S-19-059

  14. Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. & Visscher, P.T. (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005

  15. Fontes, J.-C., Gaudant, J. & Truc, G. (1980) Données paléoécologiques, teneurs en isotopes lourds et paléohydrologie du bassin gypsifère oligocène d’Aix-en-Provence. Bulletin de la Société géologique de France, 7, 491–500. https://doi.org/10.2113/gssgfbull.S7-XXII.3.491

  16. Gabbott, S.E., Norry, M.J., Aldridge, R.J. & Theron, J.N. (2001) Preservation of fossils in clay minerals; a unique example from the Upper Ordovician Soom Shale, South Africa. Proceedings of the Yorkshire Geological Society, 53, 237–244. https://doi.org/10.1144/pygs.53.3.237

  17. Gall, J.-C. (1990) Les voiles microbiens. Leur contribution à la fossilisation des organismes au corps mou. Lethaia, 23, 21–28. https://doi.org/10.1111/j.1502-3931.1990.tb01778.x

  18. Gaudant, J. (1978) Sur les conditions de gisement de l’ichthyofaune oligocène d’Aix-en-Provence (Bouches-du-Rhône): Essai de définition d’un modèle paléoécologique et paléogéographique. Geobios (Memoire special), 11, 393–397. https://doi.org/10.1016/S0016-6995(78)80039-4

  19. Gaudant, J., Nel, A., Nury, D., Véran, M. & Carnevale, G. (2018) The uppermost Oligocene of Aix-en-Provence (Bouches-du-Rhône, Southern France): A Cenozoic brackish subtropical Konservat-Lagerstätte, with fishes, insects and plants. Comptes rendus Palevol, 17, 460–478. https://doi.org/10.1016/j.crpv.2017.08.002

  20. Gerdes, G. (2007) Structures left by modern microbial mats in their host sediments. In: Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp. 5–38.

  21. Gerdes, G., Klenke, T. & Noffke, N. (2001) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47, 279–308. https://doi.org/10.1046/j.1365-3091.2000.00284.x

  22. Gerdes, G., Krumbein, W.E. & Noffke, N. (2000) Evaporite Microbial Sediments. In: Riding, R.E. & Awramik, S.M. (Eds), Microbial Sediments. Springer, Berlin, Heidelberg, pp. 196–208. https://doi.org/10.1007/978-3-662-04036-2_22

  23. Gourret, P. (1887) Recherches sur les arachnides tertiaires d’Aix en Provence. Recueil Zoologique Suisse, 4, 431–496.

  24. Greenwalt, D.E., Rose, T.R., Siljestrom, S.M., Goreva, Y.S., Constenius, K.N. & Wingerath, J.G. (2014) Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation. Acta palaeontologica Polonica, 60, 931–948. https://doi.org/10.4202/app.00071.2014

  25. Gregor, H.-J. von & Knobloch, E. (2001) Kritische Bemerkungen zu Saporta’s fossilen Floren in Süd-Frankreich, speziell in der Provence. Flora Tertiaria Mediterranea, 4, 1–57.

  26. Gupta, N.S., Michels, R., Briggs, D.E.G., Evershed, R.P. & Pancost, R.D. (2006) The organic preservation of fossil arthropods: an experimental study. Proceedings of The Royal Society (Biological sciences), 273, 2777–2783. https://doi.org/10.1098/rspb.2006.3646

  27. Harding, I.C. & Chant, L.S. (2000) Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant lake beds, Colorado, United States. Geology, 28, 195–198. https://doi.org/10.1130/0091-7613(2000)28<195:SDMAAO>2.0.CO;2

  28. Hu, L., Xiang, H.Y., Cai, C.Y., Zhao, T., Huang, D.Y. & Pan, Y.H. (2019) High-fidelity preservation of the Scarabaeoidea (Insecta) exoskeletons from the Miocene of Shanwang. Palaeoentomology, 2 (1), 94–101. https://doi.org/10.11646/palaeoentomology.2.1.7

  29. Iniesto, M., Buscalioni, Á.D., Carmen Guerrero, M., Benzerara, K., Moreira, D. & López-Archilla, A.I. (2016) Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific reports, 6, 1–12. https://doi.org/10.1038/srep25716

  30. Iniesto, M., Gutiérrez-Silva, P., Dias, J.J., Carvalho, I.S., Buscalioni, A.D. & López-Archilla, A.I. (2021) Soft tissue histology of insect larvae decayed in laboratory experiments using microbial mats: Taphonomic comparison with Cretaceous fossil insects from the exceptionally preserved biota of Araripe, Brazil. Palaeogeography, palaeoclimatology, palaeoecology, 564, 110156. https://doi.org/10.1016/j.palaeo.2020.110156

  31. Janssen, K., Mähler, B., Rust, J., Bierbaum, G. & McCoy, V.E. (2022) The complex role of microbial metabolic activity in fossilization. Biological reviews of the Cambridge Philosophical Society, 97, 449–465. https://doi.org/10.1111/brv.12806

  32. Kemp, A.E.S. (1996) Laminated sediments as palaeo-indicators. Geological Society, London, Special Publications, 116, vii–xii. https://doi.org/10.1144/GSL.SP.1996.116.01.01

  33. Martýìnez-Delclòs, X., Briggs, D.E.G. & Peñalver, E. (2004) Taphonomy of insects in carbonates and amber. Palaeogeography, palaeoclimatology, palaeoecology, 203, 19–64. https://doi.org/10.1016/S0031-0182(03)00643-6

  34. McCobb, L.M.E., Duncan, I.J., Jarzembowski, E.A., Stankiewicz, B.A., Wills, M.A. & Briggs, D.E.G. (1998) Taphonomy of the insects from the insect bed (Bembridge Marls), late Eocene, Isle of Wight, England. Geological magazine, 135, 553–563. https://doi.org/10.1017/S0016756898001204

  35. Meier, A., Kastner, A., Harries, D., Wierzbicka-Wieczorek, M., Majzlan, J., Büchel, G. & Kothe, E. (2017) Calcium carbonates: induced biomineralization with controlled macromorphology. Biogeosciences, 14, 4867–4878. https://doi.org/10.5194/bg-14-4867-2017

  36. Mei, M.X., Latif, K., Mei, C.J., Gao, J.H. & Meng, Q.F. (2020) Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation, North China. Sedimentary geology, 395, 105540.  https://doi.org/10.1016/j.sedgeo.2019.105540

  37. Murchison, R.I. & Lyell, C. (1829) On the Tertiary Fresh-water Formations of Aix, in Provence, including the Coal-field of Fuveau, with a Description of Fossil Insects, Shells and Plants, contained therein; by John Curtis, FLS; J. de C. Sowerby, Esq. FLS, and J. Lindley Esq., Professor of Botany in the London University. (Communicated by the Authors). The Edinburgh New Philosophical Journal, 7, 287–298.

  38. Muscente, A.D., Schiffbauer, J.D., Broce, J., Laflamme, M., O’Donnell, K., Boag, T.H., Meyer, M., Hawkins, A.D., Huntley, J.W., McNamara, M., MacKenzie, L.A., Stanley, G.D., Hinman, N.W., Hofmann, M.H. & Xiao, S.H. (2017) Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Research, 48, 164–188. https://doi.org/10.1016/j.gr.2017.04.020

  39. Noffke, N., Christian, D., Wacey, D. & Hazen, R.M. (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13, 1103–1124. https://doi.org/10.1089/ast.2013.1030

  40. Nury, D. (1987) L’Oligocène de Provence méridionale: Stratigraphie, dynamique sédimentaire, reconstitutions paléographiques. Aix-Marseille 1 , 410 pp.

  41. O’Brien, N.R., Meyer, H.W. & Harding, I.C. (2008) The role of biofilms in fossil preservation, Florissant Formation, Colorado. Paleontology of the Upper Eocene Florissant Formation, Colorado, 435, 19–31. https://doi.org/10.1130/2008.2435(02)

  42. O’Brien, N.R., Meyer, H.W., Reilly, K., Ross, A.M. & Maguire, S. (2002) Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mountain Geology, 37, 1–11. https://doi.org/10.2113/gsrocky.37.1.1

  43. Olcott, A.N., Downen, M.R., Schiffbauer, J.D. & Selden, P.A. (2022) The exceptional preservation of Aix-en-Provence spider fossils could have been facilitated by diatoms. Communications Earth & Environment, 3, 1–10. https://doi.org/10.1038/s43247-022-00424-7

  44. Palm, A. (2018) The dissolution of diatoms in marine microbial mats. Master’s Theses. 1219. Available from: https://opencommons.uconn.edu/gs_theses/1219 (Accessed 15 July 2022)

  45. Perri, E. & Spadafora, A. (2011) Evidence of Microbial Biomineralization in Modern and Ancient Stromatolites. In: Tewari, V. & Seckbach, J. (Eds), Stromatolites: Interaction of Microbes with Sediments. Springer Netherlands, Dordrecht, pp. 631–649. https://doi.org/10.1007/978-94-007-0397-1_28

  46. Perri, E. & Tucker, M. (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology, 35, 207–210. https://doi.org/10.1130/G23354A.1

  47. Piveteau, J. (1927) Études sur quelques amphibiens et reptiles fossiles. Masson. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=GEODEBRGMFR2015310 (Accessed 24 May 2022)

  48. Porada, H., Ghergut, J. & Bouougri, E.H. (2008) Kinneyia-type wrinkle structures—critical review and model of formation. Palaios, 23 (2), 65–77. https://doi.org/10.2110/palo.2006.p06-095r

  49. Retallack, G.J., Noffke, N. & Chafetz, H. (2012) Criteria for distinguishing microbial mats and earths. Society of Economic Paleontologists and Mineralogists Special Paper, 101, 136–152. https://doi.org/10.2110/sepmsp.101.139

  50. Sagemann, J., Bale, S.J., Briggs, D.E.G. & Parkes, R.J. (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica et cosmochimica Acta, 63, 1083–1095. https://doi.org/10.1016/S0016-7037(99)00087-3

  51. Saporta, G. de (1889) Dernières adjonctions à la“Flore fossile d’Aix-en-Provence”, précédées de“Notions stratigraphiques et paléontologiques appliquées à l’étude du gisement des plantes fossiles d’Aix-en-Provence.” G. Masson, Paris, France, 192 pp. 

  52. Schieber, J. (1998) Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, USA. Sedimentary geology, 120, 105–124. https://doi.org/10.1016/S0037-0738(98)00029-3

  53. Seilacher, A. (1970) Begriff und Bedeutung der Fossil-Lagerstätten: Neues Jahrbuch für Geologie und Paläontologie. 34–39.

  54. Selden, P.A. (2001) Eocene spiders from the Isle of Wight with preserved respiratory structures. Palaeontology, 44, 695–729. https://doi.org/10.1111/1475-4983.00199

  55. Selden, P.A., da Costa Casado, F. & Vianna Mesquita, M. (2006) Mygalomorph spiders (Araneae: Dipluridae) from the Lower Cretaceous Crato Lagerstätte, Araripe Basin, north-east Brazil: Cretaceous spiders from Crato, Brazil. Palaeontology, 49, 817–826. https://doi.org/10.1111/j.1475-4983.2006.00561.x

  56. Smith, D.M. (2012) Exceptional preservation of insects in lacustrine environments. Palaios, 27, 346–353. https://doi.org/10.2110/palo.2011.p11-107r

  57. Stolz, J.F. (2000) Structure of Microbial Mats and Biofilms. In: R. E. Riding & S. M. Awramik (Eds), Microbial Sediments. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–8. https://doi.org/10.1007/978-3-662-04036-2_1

  58. Street-Perrott, F.A. & Harrison, S.P. (1985) Lake levels and climate reconstruction. In: Hecht, A.D. (Ed.), Palaeoclimate analysis and modelling. John Wiley & Sons, New York, pp. 291–331.

  59. Suosaari, E.P., Reid, R.P., Playford, P.E., Foster, J.S., Stolz, J.F., Casaburi, G., Hagan, P.D., Chirayath, V., Macintyre, I.G., Planavsky, N.J. & Eberli, G.P. (2016) New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Scientific reports, 6 (1), 1–13. https://doi.org/10.1038/srep20557

  60. Varejão, F.G., Warren, L.V., Simões, M.G., Fürsich, F.T., Matos, S.A. & Assine, M.L. (2019) Exceptional preservation of soft tissues by microbial entombment: insights into the taphonomy of the Crato Konservat-Lagerstätte. Palaios, 34, 331–348. https://doi.org/10.2110/palo.2019.041

  61. Warren, L.V., Varejão, F.G., Quaglio, F., Simões, M.G., Fürsich, F.T., Poiré, D.G., Catto, B. & Assine, M.L. (2016) Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies, 63, 1–19.  https://doi.org/10.1007/s10347-016-0484-6

  62. Wei, S., Cui, H., Jiang, Z., Liu, H., He, H. & Fang, N. (2015) Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian journal of microbiology, 46, 455–464. https://doi.org/10.1590/S1517-838246220140533

  63. Wilby, P.R., Briggs, D.E.G., Bernier, P. & Gaillard, C. (1996) Role of microbial mats in the fossilization of soft tissues. Geology, 24, 787–790. https://doi.org/10.1130/0091-7613(1996)024<0787:ROMMIT>2.3.CO;2