Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-08-28
Page range: 340–355
Abstract views: 370
PDF downloaded: 10

Paleo-air pressures and respiration of giant Odonatoptera from the Late Carboniferous to the Early Cretaceous

ISIPU Istituto Italiano di Paleontologia Umana, Museo Civico di Zoologia, Via Aldrovandi 18. Roma, Italy
Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, 75005 Paris, France
Giant insects Meganisoptera paleo-air density Paleozoic Mesozoic

Abstract

Adult Odonatoptera are among the most efficient flying predators. They have retained many physical characteristics over an immense period stretching from the Carboniferous to the present. Over this time they have greatly varied in size and mass, as shown in the fossil record and in particular by the length, shape, and structure of their wings. A fossil of Meganeurites gracilipes indicates that this large ‘griffenfly’ had a ‘hawker’ hunting behavior similar to certain extant species, with long periods of flight in which power, thermoregulation, and respiration would therefore tend to a ‘steady state’ equilibrium, allowing oxygen requirements and tracheole volumes to be projected and compared to extant ‘hawkers’. Comparing these values with standard pO2 models allows paleo-atmospheric density estimates to be derived. The results suggest that paleo-air pressure has varied from over two bars in the Late Carboniferous, Late Permian, and Middle to Late Jurassic, with lower values in the Early Triassic and Early Jurassic.

References

  1. Agnus, A. (1902) Description d’un Neuroptère fossile nouveau. Homoioptera gigantea. Bulletin de la Société Entomologique de France, 7, 259–261. https://doi.org/10.3406/bsef.1902.23126
  2. Bechly, G. (1998) A revision of the fossil dragonfly genus Urogomphus, with description of a new species. Stuttgarter Beiträge zur Naturkunde (B) Geologie und Paläontologie, 270, 1–47.
  3. Bechly, G., Brauckmann, C., Zessin, W. & Gröning, E. (2001) New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). Zeitschrift für Zoologische Systematik und Evolutionsforschung, 39, 209–226. https://doi.org/10.1046/j.1439-0469.2001.00165.x
  4. Bechly, G. & Makarkin, V.N. (2016) A new gigantic lacewing species (Insecta: Neuroptera) from the Lower Cretaceous of Brazil confirms the occurrence of Kalligrammatidae in the Americas. Cretaceous Research, 58, 135–140. https://doi.org/10.1016/j.cretres.2015.10.014
  5. Beckemeyer, R.J. (2005) Three-dimensional geometry of the wing of Megatypus schucherti (Odonatoptera: Meganeuridae). Electronic paper based on a presentation made at the FossilX3 Congress in Pretoria, South Africa, February, 2005, 18 pp.
  6. Beckemeyer, R.J. (2006) Hind wing fragments of Meganeuropsis (Protodonata: Meganeuridae) from the Lower Permian of Noble County, Oklahoma. Bulletin of American Odonatology, 9, 85–89.
  7. Belcher, C.M., Yearsley, J.M., Hadden, R.M., McElwain, J.C. & Rein, G. (2010) Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences of the USA, 107, 22448–22453. https://doi.org/10.1073/pnas.1011974107
  8. Berner, R.A. (2007) Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology, 34, 413–415. https://doi.org/10.1130/G22470.1
  9. Berner, R.A. (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664. https://doi.org/10.1016/j.gca.2005.11.032
  10. Berner, R.A. (2009) Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309, 603–606. https://doi.org/10.2475/07.2009.03
  11. Bestwick, J., Unwin, D.M., Butler, R.J., Henderson, D.M. & Purnell, M.A. (2018) Pterosaur dietary hypotheses: a review of ideas and approaches. Biological Reviews, 93, 2021–2048. https://doi.org/10.1111/brv.12431
  12. Braddy, S.J., Poschmann, M. & Tetlie, O.E. (2008) Giant claw reveals the largest ever arthropod. Biology Letters, 4, 106–109. https://doi.org/10.1098/rsbl.2007.0491
  13. Brand, U., Davis, A.M., Shaver, K.K., Blamey, N.J.F., Heizler, M. & Lécuyer, C. (2021) Atmospheric oxygen of the Paleozoic. Earth-Science Reviews, 216, 103560. https://doi.org/10.1016/j.earscirev.2021.103560
  14. Bulanov, V.V. & Sennikov, A.G. (2010) New data on the morphology of Permian gliding weigeltisaurid reptiles of Eastern Europe. Paleontological Journal, 44, 682–694. https://doi.org/10.1134/S0031030110060109
  15. Cannell, A. (2018) The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density. Journal of Experimental Biology, 221, jeb185405. https://doi.org/10.1242/jeb.185405
  16. Cannell, A. (2020) Too big to fly? An engineering evaluation of the fossil biology of the giant birds of the Miocene in relation to their flight limitations, constraining the minimum air pressure at about 1.3 bar. Animal Biology, 70, 251–270. https://doi.org/10.1163/15707563-bja10001
  17. Clapham, M.E. & Karr, J.A. (2012) Environmental and biotic controls on the evolutionary—history of insect body size. Proceedings of the National Academy of Sciences of the United States of America, 109, 10927–10930. https://doi.org/10.1073/pnas.1204026109
  18. Dorrington, G.E. (2016) Heavily loaded flight and limits to the maximum size of dragonflies (Anisoptera) and griffenflies (Meganisoptera). Lethaia, 49, 261–274. https://doi.org/10.1111/let.12144
  19. Dudley, R. (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Journal of Experimental Biology, 201, 1043–1050. https://doi.org/10.1242/jeb.201.8.1043
  20. Dudley, R. (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton, New Jersey, xi + 476 pp. https://www.jstor.org/stable/j.ctv301g2x
  21. Ellington, C.P. (1985) Power and efficiency of insect flight muscle. Journal of Experimental Biology, 115, 293–304. https://doi.org/10.1242/jeb.115.1.293
  22. Ellington, C.P. (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of Experimental Biology, 202, 3439–3448. https://doi.org/10.1242/jeb.202.23.3439
  23. Falkowski, P.G., Katz, M.E., Milligan, A.J., Fennel, K., Cramer, B.S., Aubry, M.P. & Zapol, W.M. (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science, 309, 2202–2204. https://doi.org/10.1126/science.1116047
  24. Fleck, G., Bechly, G., Martínez-Delclòs, X., Jarzembowski, E.A., Coram, R. & Nel, A. (2003) Phylogeny and classification of the Stenophlebioptera (Odonata, Epiproctophora). Annales de la Société Entomologique de France, (N.S.), 39, 55–93. https://doi.org/10.1080/00379271.2003.10697363
  25. Fleck, G. & Nel, A. (2003) Revision of the Mesozoic family Aeschnidiidae (Odonata: Anisoptera). Zoologica, 153, 1–180.
  26. Franks, P.J., Royer, D.L., Beerling, D.J., Van de Water, P.K., Cantrill, D.J., Barbour, M.M. & Berry, J.A. (2014) New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters, 41, 4685–4694. https://doi.org/10.1002/2014GL060457
  27. Glasspool, I.J. & Scott, A.C. (2010) Phanerozoic atmospheric oxygen concentrations reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630. https://doi.org/10.1038/ngeo692
  28. Goldblatt, C., Claire, M.W., Lenton, T.M., Matthews, A.J., Watson, A.J. & Zahnle, K.J. (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891–896. https://doi.org/10.1038/ngeo692
  29. Greenlee, K.J., Henry, J.R., Kirkton, S.D., Westneat, M.W., Fezzaa, K., Lee, W.K. & Harrison J.F. (2009) Synchrotron imaging of the grasshopper tracheal system: morphological components of tracheal hypermetry and the effect of age and stage on abdominal air sac volumes and convection. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 297, 1343–1350. https://doi.org/10.1242/jeb.00767
  30. Harrison, J.F., Kaiser, A. & VandenBrooks, J.M. (2010) Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B, 277, 1937–1946. https://doi.org/10.1098/rspb.2010.0001
  31. Harrison, J.F., Waters, J.S., Cease, A.J., VandenBrooks, J.M., Callier, V., Jaco Klok, C., Shaffer, K. & Socha, J.J. (2013) How locusts breathe. Physiology, 28, 18–27. https://doi.org/10.1152/physiol.00043.2012
  32. Harrison, J.F., Klok, C.J. & Waters, J.S. (2014) Critical pO2 is size-independent in insects: implications for the metabolic theory of ecology. Current Opinions in Insect Science, 4, 54–59. https://doi.org/10.1016/j.cois.2014.08.012
  33. Harrison, J.F., Greenlee, K.J. & Verberk, W.C.E.P. (2018) Functional hypoxia in insects: definition, assessment, and consequences for physiology, ecology, and evolution. Annual Review of Entomology, 63, 303–325. https://doi.org/10.1146/annurev-ento-020117-043145
  34. Harrison, J.F., Wagner, J.M., Aivazian, V., Duell, M.E., Klok, C.J., Weed, M., Munoz, E., Fezzaa, K., Socha, J.J. & VandenBrooks, J.M. (2020) How to be a giant: hypermetric scaling of the leg in cockroaches and scarab beetles suggests oxygen transport to the legs limits maximal insect size. The FASEB Journal, 34, 1. https://doi.org/10.1096/fasebj.2020.34.s1.06388
  35. Harrison, J., Wagner, J., Aivazian, V., Duell, M., Klok, C., Weed, M., Munoz, E., Fezzaa, K., Socha, J. & VandenBrooks, J. (2021) Poor leg plumbing design saves earth from giant bugs. The FASEB Journal, 35 (Special Issue 1). https://doi.org/10.1096/fasebj.2021.35.S1.03354
  36. Heinrich, B. (1989) Beating the heat in obligate insect endotherms: the environmental problem and the organismal solutions. American Zoologist, 29, 1157–1168. https://doi.org/10.1093/icb/29.3.1157
  37. Heinrich, B. (1993) The hot-blooded insects: strategies and mechanisms of thermoregulation. Harvard University Press, Springer-Verlag Berlin, Heidelberg, v + 601 pp. https://doi.org/10.4159/harvard.9780674418516
  38. Garrouste, R. & Nel, A. (2014) The griffenflies (Meganisoptera, Odonatoptera) of the late Permian of Lodève (South of France): smalls and “giants”. ECOO (European Congress on Odonatology), Montpellier, France, July 2014.
  39. Johnson, B. & Goldblatt, C. (2018) EarthN: a new earth system nitrogen model. Geochemistry, Geophysics, Geosystems, 19, 2516–2542. https://doi.org/10.1029/2017GC007392
  40. Jongerius, S.R. & Lentink, D. (2010) Structural analysis of a dragonfly wing. Experimental Mechanics, 50, 1323–1334. https://doi.org/10.1007/s11340-010-9411-x
  41. Jouault, C., Tischlinger, H., Henrotay, M. & Nel, A. (2022) Wing coloration patterns in the Early Jurassic dragonflies as potential indicator of increasing predation pressure from insectivorous reptiles. Palaeoentomology, 5 (4), 305–318. https://doi.org/10.11646/palaeoentomology.5.4.3
  42. Kaiser, A., Klok, C.J., Socha, J.J., Lee, W.K., Quinlan, M.C. & Harrison, J.F. (2007) Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proceedings of the National Academy of Sciences of the United States of America, 104, 13198–13203. https://doi.org/10.1073/pnas.0611544104.
  43. Krause, A.J., Mills, B.J.W., Zhang, S., Planavsky, N.J., Lenton, T.M. & Poulton, S.W. (2018) Stepwise oxygenation of the Paleozoic atmosphere. Nature Communication, 9, 4081. https://doi.org/10.1038/s41467-018-06383-y
  44. Kuang, C., Li, Y.Z., Zhu, S. & Li, J. (2013) Influence of different low air pressure on combustion characteristics of ethanol pool fires. Procedia Engineering, 62, 226–233. https://doi.org/10.1016/j.proeng.2013.08.059
  45. Kukalová-Peck, J. (2009) Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity, 2, 169–198.
  46. Kukalová-Peck, J. & Richardson, E.S., Jr. (1983) New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from Upper Carboniferous strata of Mazon Creek, Illinois. Canadian Journal of Zoology, 61, 1670–1687. https://doi.org/10.1139/z83-218
  47. Lammer, H., Kasting, J.F., Chassefière, E., Johnson, R.E., Kulikov, Y.N. & Tian, F. (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Review, 139, 399–436. https://doi.org/10.1007/s11214-008-9413-5
  48. Lease, H.M. & Wolf, B.O. (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. Journal of Morphology, 271, 759–768. https://doi.org/10.1002/jmor.10835
  49. Mallik, A., Li, Y. & Wiedenbeck, M. (2018) Nitrogen evolution within the Earth’s atmosphere–mantle system assessed by recycling in subduction zones. Earth and Planetary Science Letters, 482, 556–566. https://doi.org/10.1016/j.epsl.2017.11.045
  50. May, M.L. (1982) Heat exchange and endothermy in Protodonata. Evolution, 36, 1051–1058. https://doi.org/10.1111/j.1558-5646.1982.tb05473.x
  51. May, M.L. (1991) Dragonfly flight: power requirements at high speed and acceleration. Journal of Experimental Biology, 158, 325–342. https://doi.org/10.1242/jeb.158.1.325
  52. May, M.L. (1995) Dependence of flight behavior and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: Aeshnidae). Journal of Experimental Biology, 198, 2385–2392. https://doi.org/10.1242/jeb.198.11.2385
  53. Miller, P.L. (1994) The functions of wing clapping in the Calopterygidae (Zygoptera). Odonatologica, 23, 13–22.
  54. Nel, A., Béthoux, O., Bechly, G., Martínez-Delclòs, X. & Papier, F. (2001) The Permo-Triassic Odonatoptera of the ‘protodonate’ grade (Insecta: Odonatoptera). Annales de la Société Entomologique de France (N.S.), 37, 501–525.
  55. Nel, A., Fleck, G., Garrouste, R. & Gand, G. (2008) The Odonatoptera of the Late Permian Lodève Basin (Insecta). Journal of Iberian Geology, 34, 115–122.
  56. Nel, A., Fleck, G., Garrouste, R. Gand, G., Lapeyrie, J., Bybee, S.M. & Prokop, J. (2009) Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica (A), 289, 89–121. https://doi.org/10.1127/pala/289/2009/89
  57. Nel, A. & Huang, D.Y. (2015) A new genus and species of damsel-dragonfly (Odonata: Stenophlebiidae) from the Lower Cretaceous of Inner Mongolia, China. Cretaceous Research, 56, 421–425. https://doi.org/10.1016/j.cretres.2015.06.008
  58. Nel, A., Martínez-Delclòs, X., Paicheler, J.-C. & Henrotay, M. (1993) Les ‘Anisozygoptera’ fossiles. Phylogénie et classification (Odonata). Martinia Numéro Hors Série, 3, 1–311.
  59. Nel, A., Prokop, J., Pecharová, M., Engel, M.S. & Garrouste, R. (2018) Palaeozoic giant dragonflies were hawker predators. Scientific Reports, 8 (12141). https://doi.org/10.1038/s41598-018-30629-w
  60. Niven, J.E. & Scharlemann, J.P.W. (2005) Do insects metabolic rates at rest and during flight scale with body mass? Biology Letters, 1, 346–349. https://doi.org/10.1098/rsbl.2005.0311
  61. Norberg, U.M. & Norberg, R.Å. (2012) Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. Journal of Experimental Biology, 215, 711–722. https://doi.org/10.1242/jeb.059865
  62. Norberg, U.M. & Rayner, J.M.V. (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B, 316, 335–427. https://doi.org/10.1098/rstb.1987.0030
  63. Okajima, R. (2008) The controlling factors limiting maximum body size of insects. Lethaia, 41, 423–430. https://doi.org/10.1111/j.1502-3931.2008.00094.x
  64. Pennycuick, C.J. (2008) Modelling the flying bird. Elsevier Academic Press, Amsterdam, London, 496 pp.
  65. Petrulevičius, J.F. & Gutiérrez, P.R., (2016) New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina. Arquivos Entomolóxicos, 16, 341–358.
  66. Pound, M.J., Haywood, A.M., Salzmann, U. & Riding, J.B. (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Science Reviews, 112, 1–22. https://doi.org/10.1016/j.earscirev.2012.02.005
  67. Polcyn, D.M. (1988) The thermal biology of desert dragonflies. [PhD dissertation]. University of California, Riverside, California, USA.
  68. Pritykina, L.N. (1981) New Triassic Odonata of middle Asia. In: Vishniakova, V.N., Dlussky, G.M. & Pritykina, L.N. (Eds), Novye iskopaemye nasekomye s territorii SSSR. [New fossil insects from the territory of the U.S.S.R.]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 183, 5–42.
  69. Prokop, J. & Nel, A. (2010) New griffenfly, Bohemiatupus elegans from the Late Carboniferous of western Bohemia in the Czech Republic (Odonatoptera: Meganisoptera: Meganeuridae). Annales de la Société Entomologique de France (N.S.), 46, 183–188. https://doi.org/10.1080/00379271.2010.10697655
  70. Rae, J.WB. (2018) Boron isotopes in Foraminifera: systematics, biomineralisation and CO2 reconstruction. In: Marschall, H. & Foster, G. (Eds), Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham, pp. 107–143. https://doi.org/10.1007/978-3-319-64666-4_5
  71. Rimmer, P.B., Shorttle, O. & Rugheimer, S. (2019) Oxidised micrometeorites as evidence for low atmospheric pressure on the early Earth. Geochemical Perspectives Letters, 9, 38–42. https://doi.org/10.7185/geochemlet.1903
  72. Robbins, L.L., Knorr, P.O., Wynn, J.G., Hallock, P. & Harries, P.J. (2017) Interpreting the role of pH on stable isotopes in large benthic foraminifera. ICES Journal of Marine Science, 74, 955–964. https://doi.org/10.1093/icesjms/fsw056
  73. Royer, D.L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. (2014) Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. American Journal of Sciences, 314, 1259–1283. https://doi.org/10.2475/09.2014.01
  74. Schachat, S.R., Labandeira, C.C., Saltzman, M.R., Cramer, B.D., Payne, J.L. & Boyce, C.K. (2018) Phanerozoic pO2 and the early evolution of terrestrial animals. Proceedings of the Royal Society B, 285, 20172631. https://doi.org/10.1098/rspb.2017.2631
  75. Schubnel, T., Legendre, F., Roques, P., Garrouste, P., Cornette, R., Perreau, M., Perreau, N., Desutter-Grandcolas, L. & Nel, A. (2021) Sound vs. light: wing-based communication in Carboniferous insects. Communications Biology, 4 (794), 1–11. https://doi.org/10.1038/s42003-021-02281-0
  76. Serrano, F.J., Chiappe, L.M., Palmqvist, P., Figueiredo, B., Long, J. & Sanz, J.L. (2019) The effect of long-term atmospheric changes on the macroevolution of birds. Gondwana Research, 65, 86–96. https://doi.org/10.1016/j.gr.2018.09.002
  77. Sharov, A.G. (1968) Filogeniya ortopteroidnykh nasekomykh. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR, 118, 1–216. [In Russian; translated to English in 1971: Phylogeny of the Orthopteroidea. Israel program for scientific translations, Keter Press, Jerusalem, 251 pp.]
  78. Sroka, P., Staniczek, A.H. & Bechly, G. (2015) Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. Journal of Systematic Palaeontology, 13, 963–982. https://doi.org/10.1080/14772019.2014.987958
  79. Snelling, E.P., Seymour, R.S., Matthews, P.G. & White, C.R. (2012) Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. Journal of Experimental Biology, 215, 3317–3323. https://doi.org/10.1242/jeb.069799
  80. Suárez-Tovar, C.M. & Sarmiento, C.E. (2016) Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species. Journal of Evolutionary Biology, 29, 690–703. https://doi.org/10.1111/jeb.12830
  81. Tillyard, R.J. (1925) The British Liassic dragonflies. British Museum (Natural History), Fossil Insects, London, 1, 1–39.
  82. Tracy, B.J., Tracy, C.R. & Dobkin, D.S. (1979) Desiccation in the black dragon, Hagenius brevistylus Selys. Experientia, 35, 751–752. https://doi.org/10.1007/BF01968224
  83. Verbeck, W.C., Bilton, D.T., Calosi, P. & Spicer, J.I. (2011) Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology, 92, 1565–1572. https://doi.org/10.1890/10-2369.1
  84. Vogt, J.R. & Dillon, M.E. (2013) Allometric scaling of tracheal morphology among bumblebee sisters (Apidae: Bombus): compensation for oxygen limitation at large body sizes? Physiological and Biochemical Zoology, 86, 576–587. https://doi.org/10.1086/672211
  85. Wagner, J., Duell, M. & Harrison J. (2016) Hypermetric tracheal scaling as a factor in insect gigantism. The FASEB Journal, 30, lb646. https://doi.org/10.1096/fasebj.30.1_supplement.lb646
  86. Wakeling, J.M. & Ellington, C.P. (1997) Dragonfly flight. III. Lift and power requirements. Journal of Experimental Biology, 200, 583–600. https://doi.org/10.1242/jeb.200.3.583
  87. Wang, S., Shao, L.Y., Yan, Z.M., Shi M.J. & Zhang Y.H. (2019) Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. Journal of Palaeogeography, 8, 17. https://doi.org/10.1186/s42501-019-0035-5
  88. Waller, J.T. & Svensson, E.I. (2017) Body size evolution in an old insect order: no evidence for Cope’s Rule in spite of fitness benefits of large size. Evolution, 71, 2178–2193. https://doi.org/10.1111/evo.13302
  89. Wei, Y., Pu, Z.Y., Zong, Q.G., Wan, W.X., Dubinin, E. & Fränz, M. (2014) Geomagnetic reversals, atmospheric escape and mass extinctions. Earth and Planetary Science Letters, 394, 94–98. https://doi.org/10.1016/j.epsl.2014.03.018
  90. Wootton, R.J. (1991) The functional morphology of the wings of Odonata. Advances in Odonatology, 5, 153–169.
  91. Wootton, R.J., Kukalová-Peck, J., Newman, J.S. & Muzon, J. (1998) Smart engineering in the Mid-Carboniferous: how well could Paleozoic dragonflies fly? Science, 282, 749–751. https://doi.org/10.1126/science.282.5389.749
  92. Wang, S., Shao, L.Y., Yan, Z.M. & Weis-Fogh, T. (1967) Respiration and tracheal ventilation in locusts and other flying insects. Journal of Experimental Biology, 47, 561–587. https://doi.org/10.1242/jeb.47.3.561
  93. Yoshioka, T., Wiedenbeck, M., Shcheka, S. & Keppler, H. (2018) Nitrogen solubility in the deep mantle and the origin of Earth’s primordial nitrogen budget. Earth and Planetary Science Letters, 488, 134–143. https://doi.org/10.1016/j.epsl.2018.02.021
  94. Zhang, H.C., Zheng, D.R., Wang, B., Fang, Y. & Jarzembowski, E.A. (2013) The largest known odonate in China: Hsiufua chaoi Zhang et Wang, gen. et sp nov from the Middle Jurassic of Inner Mongolia. Chinese Science Bulletin, 58, 1579–1584. https://doi.org/10.1007/s11434-012-5567-3
  95. Zhang, S., Planavsky, N.J., Krause, A.J., Bolton, E.W. & Mills, B.J.W. (2018) Model based Paleozoic atmospheric oxygen estimates: a revisit to GEOCARBSULF. American Journal of Science, 318, 557–589. https://doi.org/10.2475/05.2018.05
  96. Zhang, Z.J., Hong, Y.C., Lu, L.W., Fang, X.S. & Jin, Y.G. (2006) Shenzhousia qilianshanensis gen. et sp. nov. (Protodonata, Meganeuridae), a giant dragonfly from the Upper Carboniferous of China. Progress in Natural Science, 16, 328–330. https://doi.org/10.1080/10020070612331343233
  97. Zheng, D.R., Nel, A., Wang, H., Wang, B., Jarzembowski, E.A., Chang, S.C. & Zhang, H.C. (2017) The first Late Triassic Chinese triadophlebiomorphan (Insecta: Odonatoptera): biogeographic implications. Scientific Reports, 7, 1–7. https://doi.org/10.1038/s41598-017-01710-7
  98. Zhou, C.F., Gao, K.Q., Yi, H., Xue, J., Li, Q. & Fox, R.C. (2017) Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. Royal Society Open Science, 4, 160672. https://doi.org/10.1098/rsos.160672