Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-27
Page range: 80-91
Abstract views: 15
PDF downloaded: 1

Hodotermopsid termites from the mid-Cretaceous Hkamti and Kachin ambers (Isoptera: Hodotermopsidae)

Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA; Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CP50, 45 rue Buffon, F-75005 Paris, France
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CP50, 45 rue Buffon, F-75005 Paris, France; Institut des Sciences de l’Évolution (UMR 5554), Université de Montpellier, CNRS, F-34095 Montpellier, France; Géosciences Rennes (UMR 6118), Université de Rennes, CNRS, F-35000 Rennes, France
Albian Blattodea Cenomanian Myanmar taxonomy Teletisoptera

Abstract

The past diversity of Isoptera stands in stark contrast to their extant diversity as the number of fossil termite species is relatively low. Many early-diverging families are unknown from the Cretaceous, a crucial period encompassing the origins of many extant lineages. Therefore, the study of their past diversity dynamics, leading to their present-day diversity, and origin remains shrouded by a dearth of fossil evidence. Here, we report two new taxa of Hodotermopsidae from the Albian Hkamti and mid-Cretaceous Kachin ambers: Hodotermopsella novella gen. et sp. nov. and Tyrannotermes spinifer gen. et sp. nov., the former placed in a new subfamily, Hodotermopsellinae subfam. nov. These new species include the earliest occurrences of Hodotermopsidae in the fossil record. We propose new synonymizations for Cretaceous genera from China Jitermes Ren (= Huaxiatermes Ren and Asiatermes Ren, both syn. nov.) and Meiatermes Lacasa Ruiz & Martínez-Delclòs (= Caatingatermes Martins-Neto, Ribeiro-Júnior & Prezoto, Araripetermes Martins-Neto, Ribeiro-Júnior & Prezoto, Nordestinatermes Martins-Neto, Ribeiro-Júnior & Prezoto, all syn. nov.), and revise the status of the Carinatermitidae stat. nov. We discuss the systematic placement of the Pabuonqedidae as well as the implications of the new hodotermopsids on future divergence-time estimates for Teletisoptera and Isoptera.

References

  1. Barden, P. & Engel, M.S. (2021) Fossil social insects. In: Starr, C.K. (Ed.), Encyclopedia of social insects. Springer, Cham, pp. 384–403. https://doi.org/10.1007/978-3-319-90306-4_45-1
  2. Brullé, G.A. (1832) Expédition Scientifique de Morée. Section des Sciences Physiques. Tome III. Partie 1. Zoologie. Deuxième Section-Des Animaux Articulés. Levrault, Paris, 400 pp.
  3. Buček, A., Šobotník, J., He, S.L., Shi, M., McMahon, D.P., Holmes, E.C., Roisin, Y., Lo, N. & Bourguignon, T. (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Current Biology, 29 (21), 3728–3734. https://doi.org/10.1016/j.cub.2019.08.076
  4. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21 (5), 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  5. Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLOS Biology, 4, e88. https://doi.org/10.1371/journal.pbio.0040088
  6. Emerson, A.E. (1933) A revision of the genera of fossil and Recent Termopsinae (Isoptera). University of California Publications in Entomology, 6, 165–196.
  7. Engel, M.S. & Gross, M. (2009) A giant termite from the Late Miocene of Styria, Austria (Isoptera). Naturwissenschaften, 96 (2), 289–295. https://doi.org/10.1007/s00114-008-0480-y
  8. Engel, M.S. & Tanaka, T. (2015) A giant termite of the genus Gyatermes from the Late Miocene of Nagano Prefecture, Japan (Isoptera). Novitates Paleoentomologicae, 10, 1–10. https://doi.org/10.17161/np.v0i10.4900
  9. Engel, M.S., Grimaldi, D.A. & Krishna, K. (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27. https://doi.org/10.1206/651.1
  10. Engel, M.S., Nel, A., Azar, D., Soriano, C., Tafforeau, P., Néraudeau, D., Colin, J.-J. & Perrichot, V. (2011) New, primitive termites (Isoptera) from Early Cretaceous ambers of France and Lebanon. Palaeodiversity, 4, 39–49.
  11. Engel, M.S., Barden, P., Riccio, M.L. & Grimaldi, D.A. (2016) Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Current Biology, 26 (4), 522–530. https://doi.org/10.1016/j.cub.2015.12.061
  12. Grimaldi, D. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, Cambridge, UK, xv + 755 pp.
  13. Grimaldi, D. & Ross, A. (2017) Extraordinary Lagerstätten in amber, with particular reference to the Cretaceous of Burma. In: Fraser, N.C. & Sues, H.-D. (Eds), Terrestrial conservation Lagerstätten: windows into the evolution of life on land. Dunedin Academic Press, Edinburgh, pp. 287–342.
  14. Jiang, R.X., Zhang, H.R., Eldredge, K.T., Song, X.B., Li, Y.Y., Tihelka, E., Huang, D.Y., Wang, S., Engel, M.S. & Cai, C.Y. (2021) Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera). Palaeoentomology, 4 (4), 374–389. https://doi.org/10.11646/palaeoentomology.4.4.13
  15. Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. (2021) Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth-death process. Systematic Entomology, 46 (3), 592–610. https://doi.org/10.1111/syen.12477
  16. Jouault, C., Engel, M.S., Huang, D.Y., Berger, J., Grandcolas, P., Perkovsky, E.E., Legendre, F. & Nel, A. (2022a) Termite Valkyries: soldier-like alate termites from the Cretaceous and task specialization in the early evolution of Isoptera. Frontiers in Ecology and Evolution, 10, 737367. https://doi.org/10.3389/fevo.2022.737367
  17. Jouault, C., Engel, M.S., Legendre, F., Huang, D.Y., Grandcolas, P. & Nel, A. (2022b) Incrementing and clarifying the diversity and early evolution of termites (Blattodea: Isoptera). Zoological Journal of the Linnean Society, 196 (2), 608–629. https://doi.org/10.1093/zoolinnean/zlac064
  18. Krishna, K., Grimaldi, D.A., Krishna, V. & Engel, M.S. (2013) Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 1–2704. https://doi.org/10.1206/377.1
  19. Lacasa Ruiz, A. & Martínez-Delclòs, X. (1986) Meiatermes, nuevo género fósil de insecto isóptero (Hodotermitidae) de las calizas Neocomienses del Montsec (Provincia de Lérida, España). Institut d’Estudias Ilerdencs, Diputacion Provincial de Lleida, Lleida, 65 pp.
  20. Lartillot, N., Phillips, M.J. & Ronquist, F. (2016) A mixed relaxed clock model. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 371 (1699), 20150132. https://doi.org/10.1098/rstb.2015.0132
  21. Lepage, T., Bryant, D., Philippe, H. & Lartillot, N. (2007) A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24 (12), 2669–2680. https://doi.org/10.1093/molbev/msm193
  22. Lo, N., Engel, M.S., Cameron, S., Nalepa, C.A., Tokuda, G., Grimaldi, D.A., Kitade, O., Krishna, K., Klass, K.-D., Maekawa, K., Miura, T. & Thompson, G.J. (2007) Save Isoptera: a comment on Inward et al. Biology Letters, 3 (5), 562–563. https://doi.org/10.1098/rsbl.2007.0264
  23. Nel, A. (2021) Impact of the choices of calibration points for molecular dating: a case study of Ensifera. Palaeoentomology, 4 (3), 228–230. https://doi.org/10.11646/palaeoentomology.4.3.9
  24. O’Reilly, J.E., Reis, M. dos & Donoghue, P.C.J. (2015) Dating tips for divergence‐time estimation. Trends in Genetics, 31 (11), 637–650. https://doi.org/10.1016/j.tig.2015.08.001
  25. Ren, D. (1995) [Insecta]. In: Ren, D., Lu, L.W., Guo, Z.G. & Ji, S.A., Faunae and stratigraphy of Jurassic-Cretaceous in Beijing and the adjacent areas. Seismological Publishing House, Beijing, pp. 47–121.
  26. Rosen, K. von (1913) Die Fossilen Termiten: Eine kurze Zusammenfassung der bis jetzt bekannten Funde. Transactions of the 2nd International Congress of Entomology, 2, 318–335.
  27. Schubnel, T., Desutter-Grandcolas, L., Legendre, F., Prokop, J., Mazurier, A., Garrouste, R., Grandcolas, P. & Nel, A. (2019) To be or not to be: postcubital vein in insects revealed by microtomography. Systematic Entomology, 45 (2), 327–336. https://doi.org/10.1111/syen.12399
  28. Scudder, S.H. (1883) The fossil white ants of Colorado. Proceedings of the American Academy of Arts and Sciences, 19, 133–145. https://doi.org/10.2307/25138724
  29. Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  30. Tong, K.J., Duchêne, S., Ho, S.Y.W. & Lo, N. (2014) Comment on “Phylogenomics resolves the timing and pattern of insect evolution”. Science, 349 (6247), 487. https://doi.org/10.1126/science.aaa5460
  31. Vršanský, P., Koubová, I., Vršanská, L., Hinkelman, J., Kúdela, M., Kúdelová, T., Liang, J.H., Xia, F., Lei, X.J., Ren, X.Y., Vidlička, L., Bao, T., Ellenberger, S., Šmídová, L. & Barclay, M. (2019) Early wood-boring “mole roach” reveals eusociality “missing ring”. AMBA Projekty, 9, 1–28.
  32. Wang, M.L., Hellemans, S., Šobotník, J., Arora, J., Buček, A., Sillam-Dussès, D., Clitheroe, C., Lu, T., Lo, N., Engel, M.S., Roisin, Y., Evans, T.A. & Bourguignon, T. (2022) Phylogeny, biogeography, and classification of Teletisoptera (Blattaria: Isoptera). Systematic Entomology, 47 (4), 581–590. https://doi.org/10.1111/syen.12548
  33. Ware, J.L., Grimaldi, D.A. & Engel, M.S. (2010) The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Structure and Development, 39 (2–3), 204–219. https://doi.org/10.1016/j.asd.2009.11.003
  34. Warnock, R.C.M., Yang, Z.H. & Donoghue, P.C.J. (2012) Exploring uncertainty in the calibration of the molecular clock. Biology Letters, 8 (1), 156–159. https://doi.org/10.1098/rsbl.2011.0710
  35. Warnock, R.C.M., Parham, J.F., Joyce, W.G., Lyson, T.R. & Donoghue, P.C.J. (2015) Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society, Series B, Biological Sciences, 282 (1798), 20141013. https://doi.org/10.1098/rspb.2014.1013
  36. Weidner, H. (1955) Die Bernstein-Termiten der Sammlung des Geologischen Staatsinstituts Hamburg. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 24, 55–74.
  37. Xing, L. & Qiu, L. (2020) Zircon U-Pb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeography, Palaeoclimatology, Palaeoecology, 558, 109960. https://doi.org/10.1016/j.palaeo.2020.109960
  38. Yu, T.T., Thomson, U., Mu, L. Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. 2019. An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, USA, 116 (23), 11345–11350. https://doi.org/10.1073/pnas.1821292116
  39. Zhao, Z., Eggleton, P., Yin, X., Gao, T.P., Shih, C.K. & Ren, D. (2019) The oldest known mastotermitids (Blattodea: Termitoidae) and phylogeny of basal termites. Systematic Entomology, 44 (3), 612–623. https://doi.org/10.1111/syen.12344
  40. Zheng, D.R., Chang, S.C., Perrichot, V., Dutta, S., Rudra, A., Mu, L., Kelly, R.S., Li, S., Zhang, Q., Zhang, Q.Q., Wong, J., Wang, J., Wang, H., Fang, Y., Zhang, H.C. & Wang, B. (2018) A Late Cretaceous amber biota from central Myanmar. Nature Communications, 9, 3170. https://doi.org/10.1038/s41467-018-05650-2