Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-19
Page range: 254-264
Abstract views: 6
PDF downloaded: 3

Driven apart: fossil parasitic long-legged velvet mite larvae on gall midges represent a long lost parasitic association between mites and dipterans

Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
Kachin amber Burmese amber Erythraeoidea Cecidomyiidae fossil parasites

Abstract

Parasites are virtually ubiquitous, and this has probably been the case for quite some time. The record of parasitic mites (sensu lato) goes back as far as the Carboniferous (~359–259 mya) and, in fact, they are one of the most reported parasites in amber. The six-legged larvae of the mite group Parasitengona have a wide host range, among which are flies. Here we report for the first time cases of larval erythraeoidean mites, commonly referred to as long-legged velvet mites, parasitising gall midges (Cecidomyiidae) in about 100 million years old (Cretaceous) Kachin amber, Myanmar. In three of the four cases here reported, a single erythraeoidean mite was attached to a gall midge, while in one of the cases two mites are associated to a gall midge host. Of the reported gall midges, one specimen represents the ingroup Lestremiinae, two represent unnamed lineages closely related to Cecidomyiinae, and one specimen might represent the group Cecidomyiinae, being the earliest record of this group so far. In the extant fauna, there are no records of associations of erythraeoidean larvae with gall midges. After the Cretaceous, long-legged velvet mites may have shifted their host range, although knowledge on the host range of parasitengonan mites is still limited to arrive to definitive conclusion.

References

  1. Azar, D. (2007) Preservation and accumulation of biological inclusions in Lebanese amber and their significance. Comptes Rendus Palevol, 6 (1–2), 151–156. https://doi.org/10.1016/j.crpv.2006.10.004
  2. Azar, D., Gèze, R. & Acra, F. (2010) Lebanese amber. In: Penney, D. (Ed.), Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp. 271–298.
  3. Arillo, A., Blagoderov, V. & Peñalver, E. (2018) Early Cretaceous parasitism in amber: A new species of Burmazelmira fly (Diptera: Archizelmiridae) parasitized by a Leptus sp. mite (Acari, Erythraeidae). Cretaceous Research, 86, 24–32. https://doi.org/10.1016/j.cretres.2018.02.006
  4. Baker, A.S. & Selden, P.A. (1997) New morphological and host data for the ectoparasitic larva of Leptus hidakai Kawashima (Acari, Acariformes, Erythraeidae). Systematic Parasitology, 36, 183–191. https://doi.org/10.1023/A:1005757014689
  5. Bernard, R., Felska, M. & Mąkol, J. (2019) Erythraeid larvae parasitizing dragonflies in Zambia-description of Leptus (Leptus) chingombensis sp. nov. with data on biology and ecology of host-parasite interactions. Systematic and Applied Acarology, 24 (5), 790–813. https://doi.org/10.11158/saa.24.5.6
  6. Boucot, A.J. & Poinar, G.O. (2010) Fossil behavior compendium. CRC Press, Boca Ratón, Florida, 363 pp. https://doi.org/10.1201/9781439810590
  7. Castellani, C., Maas, A., Waloszek, D. & Haug, J.T. (2011) New pentastomids from the Late Cambrian of Sweden—deeper insight of the ontogeny of fossil tongue worms. Palaeontographica A, 293 (4–6), 95–145. https://doi.org/10.1127/pala/293/2011/95
  8. Combes, C. (1991) Ethological aspects of parasite transmission. The American Naturalist, 138 (4), 866–880. https://doi.org/10.1086/285257
  9. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  10. De Baets, K., Dentzien-Dias, P., Upeniece, I., Verneau, O. & Donoghue, P.C. (2015) Constraining the deep origin of parasitic flatworms and host-interactions with fossil evidence. Advances in Parasitology, 90, 93–135. https://doi.org/10.1016/bs.apar.2015.06.002
  11. De Baets, K., Huntley, J., Klompmaker, A., Schiffbauer, J. & Muscente, A. (2021) The fossil record of parasitism: its extent and taphonomic constraints. In: De Baets, K. & Huntley, J.W. (Eds), The evolution and fossil record of parasitism: coevolution and paleoparasitological techniques. Topics in Geobiology 50, Springer, Cham, pp. 1–50. https://doi.org/10.1007/978-3-030-52233-9_1
  12. De Baets, K. & Littlewood, D.T.J. (2015) The importance of fossils in understanding the evolution of parasites and their vectors. Advances in Parasitology, 90, 1–51. https://doi.org/10.1016/bs.apar.2015.07.001
  13. Delclòs, X., Arillo, A., Peñalver, E., Barrón, E., Soriano, C., Valle, R.L.D., Bernárdez, E., Corral, C. & Ortuño, V.M. (2007) Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol, 6 (1–2), 135–149. https://doi.org/10.1016/j.crpv.2006.09.003
  14. Dorchin, N., Harris, K.M. & Stireman J.O. (2019) Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Molecular Phylogenetics and Evolution, 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602
  15. Eichmann, F. (2002) Paläosymbiosen im Bernstein. Arbeitskreis Paläontologie Hannover, 30 (1), 1–28.
  16. Fedotova Z.A., Perkovsky E.E., Ross A.J. & Zhang Q. (2022) A new genus and species of gall midges the tribe Winnertziini (Diptera, Cecidomyiidae, Porricondylinae) from lower Eocene Fushun amber from China. Palaeoentomology, 5 (1), 90–98. https://doi.org/10.11646/palaeoentomology.5.1.11
  17. Fei, M., Gols, R. & Harvey, J.A. (2023) The biology and ecology of parasitoid wasps of predatory arthropods. Annual Review of Entomology, 68, 109–128. https://doi.org/10.1146/annurev-ento-120120-111607
  18. Gagné, R.J. (1981) Cecidomyiidae. In: McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R. & Wood, D.M. (coordinators), Manual of Nearctic Diptera. Volume I. Agriculture Canada, Ottawa, pp. 489–492.
  19. Gagné, R.J. & Jaschhof, M. (2021) A catalog of the Cecidomyiidae (Diptera) of the world. Fifth edition. Digital, Washington, D.C., 816 pp.
  20. Goldarazena, A., Jordana R. & Zhang, Z.Q. (1999) Notes on Abrolophus neobrevicollis Z. and G. and Grandjeanella multisetosa Z. and G. (Acari: Erythraeidae) with the seasonal abundance in Mediterranean Spain. International Journal of Acarology, 25 (1), 29–36. https://doi.org/10.1080/01647959908683609
  21. Gorb, S.N., Wildermuth, H., Kohl, S. & Büsse, S. (2022) Tarsal attachment structures of the biting midge Forcipomyia paludis (Diptera: Ceratopogonidae), a specialized ectoparasite of Odonata imagines. Zoomorphology, 141 (3–4), 297–306. https://doi.org/10.1007/s00435-022-00561-9
  22. Grimaldi, D. (2000) Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Backhuys Publishers, Leiden, 498 pp.
  23. Haarder, S. & Mąkol, J. (2022) Terrestrial Parasitengona mites (Trombidiformes) of Denmark—new data on parasite-host associations and new country records. Acarologia, 62 (2), 508–520. https://doi.org/10.24349/yglc-mnck
  24. Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J. & Rohfritsch, O. (2003) Grasses and gall midges: plant defense and insect adaptation. Annual Review of Entomology, 48, 549–577. https://doi.org/10.1146/annurev.ento.48.091801.112559
  25. Hassell, M.P. & Waage, J.K. (1984) Host-parasitoid population interactions. Annual Review of Entomology, 29 (1), 89–114. https://doi.org/10.1146/annurev.en.29.010184.000513
  26. Haug, C., Shannon, K.R., Nyborg, T. & Vega, F.J. (2013) Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda. Boletín de la Sociedad Geológica Mexicana, 65 (2), 273–284. https://doi.org/10.18268/BSGM2013v65n2a9
  27. Haug, J.T. (2020) Why the term “larva” is ambiguous, or what makes a larva? Acta Zoologica, 101, 167–188. https://doi.org/10.1111/azo.12283
  28. Haug, J.T., Haug, C. & Nagler, C. (2021) Evolutionary history of crustaceans as parasites. In: De Baets, K. & Huntley, J. W. (Eds), The Evolution and Fossil Record of Parasitism. Topics in Geobiology 49. Springer, Cham, pp. 347–376. https://doi.org/10.1007/978-3-030-42484-8_10
  29. Haug, J.T., Müller, P. & Haug, C. (2018) The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters, 4, 31. https://doi.org/10.1186/s40851-018-0116-9
  30. Jaschhof, M. (2000) Catotrichinae subfam. n.: a re-examination of higher classification in gall midges (Diptera: Cecidomyiidae). Entomological Science, 3 (4), 639–652
  31. Jaschhof, M. (2021) A review of gall midges (Diptera: Cecidomyiidae) described from Mesozoic deposits. Palaeoentomology, 4 (1), 1–14. https://doi.org/10.11646/palaeoentomology.4.1.1
  32. Khaustov, A.A. & Poinar, G. (2011) Protoresinacarus brevipedis gen. n., sp. n. from Early Cretaceous Burmese amber: the first fossil record of mites of the Family Resinacaridae (Acari: Heterostigmata: Pyemotoidea). Historical Biology, 23 (2–3), 219–222. https://doi.org/10.1080/08912963.2010.508881
  33. Kiesmüller, C., Haug, J.T., Müller, P. & Hörnig, M.K. (2022) A case of frozen behaviour: A flat wasp female with a beetle larva in its grasp in 100-million-year-old amber. Fossil Record, 25, 287–305. https://doi.org/10.3897/fr.25.82469
  34. Klompmaker, A.A., Artal, P., van Bakel, B.W., Fraaije, R.H. & Jagt, J.W. (2014) Parasites in the fossil record: a Cretaceous fauna with isopod-infested decapod crustaceans, infestation patterns through time, and a new ichnotaxon. PLoS One, 9 (3), e92551. https://doi.org/10.1371/journal.pone.0092551
  35. Konikiewicz, M. & Mąkol, J. (2018) Insight into fossil fauna of terrestrial Parasitengona mites (Trombidiiformes: Prostigmata)—The first representatives of Erythraeina Welbourn, 1991 and Trombidiina Welbourn, 1991 in Burmese amber. Cretaceous Research, 89, 60–74. https://doi.org/10.1016/j.cretres.2018.02.017
  36. Krantz G.W. & Walter D.E. (2009) A manual of acarology. 3rd edn. Texas Tech University Press, Lubbock, 807 pp.
  37. Magowski, W.Ł. (1995) Fossil Heterostigmatid mites in amber—85 million year-old arthropod mite relatioships. In: Kropczyńska, D., Boczek, J. & Tomczyk A. (Eds), The Acari. Physiological and Ecological Aspects of Acari-Host Relationships. Proceedings of the 2nd International Meeting of EURAAC, DABOR Publ. House, Krynica, pp. 53–58.
  38. Mąkol, J., Felska, M., Moniuszko, H. & Zaleśny, G. (2012) Redescription of Leptus kattikus Haitlinger, 2009 (Actinotrichida, Parasitengona, Erythraeidae) and molecular identification of its host from DNA barcoding. Zootaxa, 3569 (1), 67–78. https://doi.org/10.11646/zootaxa.3569.1.5
  39. Ma̧kol, J., Łaydanowicz, J. & Kłosiska, A. (2010) Myrmecophilous Parasitengona (Acari: Prostigmata)—accident or adaptation? Annales Zoologici, 60 (3), 429–437. https://doi.org/10.3161/000345410X535415
  40. Mąkol, J. & Wohltmann, A. (2000) A redescription of Trombidium holosericeum (Linnaeus, 1758) (Acari: Actinotrichida: Trombidioidea) with characteristics of all active instars and notes on taxonomy and biology. Annales Zoologici, 50 (1), 67–91.
  41. Mayoral, J., Miralles-Núñez, A., Sánchez, J. & Espadaler, X. (2023) Parasitic mites of the genus Forania (Acari, Erythraeidae) on ants (Hymenoptera: Formicidae) in NE Spain: When taxonomy meets citizen science. Systematic and Applied Acarology, 28 (1), 123–130. https://doi.org/10.11158/saa.28.1.11
  42. McMechan, A.J., Hodgson, E.W., Varenhorst, A.J., Hunt, T., Wright, R. & Potter, B. (2021) Soybean gall midge (Diptera: Cecidomyiidae), a new species causing injury to soybean in the United States. Journal of Integrated Pest Management, 12, 8. https://doi.org/10.1093/jipm/pmab001
  43. Moniuszko, H. & Mąkol, J. (2016) Host-parasite association in trombiculid mites (Actinotrichida: Trombiculidae) of temperate zone—the case of Hirsutiella zachvatkini (Schluger, 1948); are we dealing with prolonged contact with the host? Parasites & Vectors, 9, 61. https://doi.org/10.1186/s13071-016-1339-2
  44. Muñoz-Cárdenas, K., Fuentes-Quintero, L.S., Rueda-Ramírez, D., Rodríguez, C.D. & Cantor, R.F. (2015) The Erythraeoidea (Trombidiiformes: Prostigmata) as biological control agents, with special reference to the genus Balaustium. In: Carrillo, D., de Moraes, G. J. & Peña, J. E. (Eds), Prospects for biological control of plant feeding mites and other harmful organisms. Progress in Biological Control 19, Springer, Cham, pp. 207–239. https://doi.org/10.1007/978-3-319-15042-0_8
  45. Nagler, C., Hyžný, M. & Haug, J.T. (2017) 168 million years old “marine lice” and the evolution of parasitism within isopods. BMC Evolutionary Biology, 17, 76. https://doi.org/10.1186/s12862-017-0915-1
  46. Nelson, W.A., Keirans, J.E., Bell, J.F. & Clifford, C.M. (1975) Host-ectoparasite relationships. Journal of Medical Entomology, 12 (2), 143–166. https://doi.org/10.1093/jmedent/12.2.143
  47. Peñalver, E., Arillo, A. & Nel, A. (2022) A review of the Cretaceous genus Eltxo (Diptera: Cecidomyiidae) with description of the new species Eltxo grimaldii from El Soplao amber. Palaeoentomology, 5 (5), 461–467. https://doi.org/10.11646/palaeoentomology.5.5.7
  48. Penttinen, J. & Spungis, V. (2007) Additions to the Finnish fauna of log midges (Diptera, Cecidomyiidae: Porricondylinae). Sahlbergia, 12 (1), 36–42.
  49. Perkovsky, E.E. & Fedotova, Z.A. (2017) The second Cretaceous gall midge genus of the tribe Diallactiini (Diptera, Cecidomyiidae) from the Late Cretaceous Burmese amber. Vestnik Zoologii, 51 (2), 117–124. https://doi.org/10.1515/vzoo-2017-0017
  50. Poinar, G.O., Jr., Treat, A.E. & Southcott, R.V. (1991) Mite parasitism of moths: Examples of paleosymbiosis in Dominican amber. Experientia, 47 (2), 210–212. https://doi.org/10.1007/BF01945430
  51. Poinar, G.O., Jr., Acra, A. & Acra, F. (1994) Animal-animal parasitism in Lebanese amber. Medical Science Research, 22 (2), 159.
  52. Poinar, G.O, Jr., Krantz, G.W., Boucot, A.J. & Pike, T.M. (1997) A unique Mesozoic parasitic association. Naturwissenschaften, 84 (7), 321–322. https://doi.org/10.1007/s001140050405
  53. Poinar, G.O., Jr. & Milki, R. (2001) Lebanese amber. The oldest insect ecosystem in fossilized amber. Oregon State University Press, Corvallis, Oregon, 96 pp.
  54. Robin, N., Béthoux, O., Sidorchuk, E., Cui, Y.Y., Li, Y.N., Germain, D., King, A., Berenguer, F. & Ren, D. (2016) A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Current Biology, 26 (10), 1376–1382. https://doi.org/10.1016/j.cub.2016.03.068
  55. Schädel, M., Hörnig, M. K., Hyžný, M. & Haug, J.T. (2021) Mass occurrence of small isopodan crustaceans in 100-million-year-old amber: an extraordinary view on behaviour of extinct organisms. PalZ, 95, 429–445. https://doi.org/10.1007/s12542-021-00564-9
  56. Seeman, O.D. & Walter, D.E. (2023) Phoresy and mites: more than just a free ride. Annual Review of Entomology, 68 (1), 69–88. https://doi.org/10.1146/annurev-ento-120220-013329
  57. Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  58. Shodipo, M.O., Gomez, R.D.C., Welicky, R.L. & Sikkel, P.C. (2019) Apparent kleptoparasitism in fish—parasitic gnathiid isopods. Parasitology Research, 118, 653–655. https://doi.org/10.1007/s00436-018-6152-8
  59. Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. (2019) Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zoological Journal of the Linnean Society, 185 (1), 98–110. https://doi.org/10.1093/zoolinnean/zly029
  60. Sivinski, J., Marshall, S. & Petersson, E. (1999) Kleptoparasitism and phoresy in the Diptera. Florida Entomologist, 82, 179–197.
  61. Sless, T.J., Danforth, B.N. & Searle, J.B. (2023) Evolutionary origins and patterns of diversification in animal brood parasitism. The American Naturalist, 202 (2), 107–121. https://doi.org/10.1086/724839
  62. Smith B.P. (1998) Loss of larval parasitism in parasitengonine mites. Experimental & Applied Acarology, 22, 187–199. https://doi.org/10.1023/A:1006010230247
  63. Söller, R., Wohltmann, A., Witte, H. & Blohm, D. (2001) Phylogenetic relationships within terrestrial mites (Acari: Prostigmata, Parasitengona) inferred from comparative DNA sequence analysis of the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution, 18 (1), 47–53. https://doi.org/10.1006/mpev.2000.0855
  64. Solórzano-Kraemer M.M., Delclòs, X., Clapham, M.E., Arillo, A., Peris, D., Jäger, P., Stebner, F. & Peñalver, E. (2018) Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proceedings of the National Academy of Sciences, 115 (26), 6739–6744. https://doi.org/10.1073/pnas.1802138115
  65. Solórzano-Kraemer, M.M., Kraemer, A.S., Stebner F., Bickel D.J. & Rust J. (2015) Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS One, 10 (3), e0118820. https://doi.org/10.1371/journal.pone.0118820
  66. Southcott, R.V. (1961) Studies on the systematics and biology of the Erythraeoidea (Acarina), with critical revision of the genera and subfamilies. Australian Journal of Zoology, 9 (3), 367–610. https://doi.org/10.1071/ZO9610367
  67. Southcott, R.V. (1992) Revision of the larvae of Leptus Latreille (Acarina: Erythraeidae) of Europe and North America, with descriptions of post-larval instars. Zoological Journal of the Linnean Society, 105 (1), 1–153. https://doi.org/10.1111/j.1096-3642.1992.tb01228.x
  68. Stroiński, A., Felska, M. & Mąkol, J. (2013) A review of host-parasite associations between terrestrial parasitengona (Actinotrichida: Prostigmata) and bugs (Hemiptera). Annales Zoologici, 63 (2), 195–221. https://doi.org/10.3161/000345413X669522
  69. Stuart, J.J., Chen, M.S., Shukle, R. & Harris, M.O. (2012) Gall midges (Hessian flies) as plant pathogens. Annual Review of Phytopathology, 50, 339–357. https://doi.org/10.1146/annurev-phyto-072910-095255
  70. Suhonen, J., Ilvonen, J.J., Nyman, T. & Sorvari, J. (2019) Brood parasitism in eusocial insects (Hymenoptera): role of host geographical range size and phylogeny. Philosophical Transactions of the Royal Society B, 374 (1769), 20180203. https://doi.org/10.1098/rstb.2018.0203
  71. Thompson, W.R. & Simmonds, F.J. (1965) A catalogue of the parasites and predators of insect pests. Section 4. Host Predator Catalogue. Commonwealth Agricultural Bureaux, Wallingford, UK, 208 pp.
  72. Treat A.E. (1975) Mites of moths and butterflies. Cornell University Press lthaca, New York, 362 pp.
  73. van der Wal, S., Schädel, M., Ekrt, B. & Haug, J.T. (2021) Description and ontogeny of a 40-million-year-old parasitic isopodan crustacean: Parvucymoides dvorakorum gen. et sp. nov. PeerJ, 9, e12317. https://doi.org/10.7717/peerj.12317
  74. Weitschat, W. & Wichard, W. (1998) Atlas der Pflanzen und Tiere im Baltischen Bernstein. Dr. Friedrich Pfeil, München, 256 pp.
  75. Welbourn, W.C. (1983) Potential use of trombidioid and erythraeoid mites as biological control agents of insect pests. In: Hoy, M.A., Cunningham, G.L. & Knutson, L. (Eds), Biological control of pests by mites. Agricultural Experiment Station, Division of Agriculture and Natural Resources, Special Publication 3304, University of California, Berkeley, pp. 103–140.
  76. Wohltmann, A. (2000) The evolution of life histories in Parasitengona (Acari: Prostigmata). Acarologia, 41 (1–2), 145–204.
  77. Wohltmann, A. (2001) Closely related species of Parasitengonae (Acari: Prostigmata) inhabiting the same area: Patterns facilitating coexistence. In: Halliday, R.B., Walter, D.E., Proctor, H.C., Norton, R.A. & Colloff, M.J. (Eds), Proceedings of the 10th International Congress of Acarology. CSIRO Publishing, Melbourne, pp. 121–135.
  78. Wohltmann, A., Gabryś, G. & Mąkol, J. (2006) Acari: Terrestrial Parasitengona inhabiting transient biotopes. In: Gerecke, R. (Ed.), Süßwasserfauna von Mitteleuropa, Vol. 7/2–1 Chelicerata: Araneae/Acari I (Vol. 7). Springer Spektrum, Berlin, pp. 158–240. https://doi.org/10.1007/978-3-662-55958-1
  79. Yoder, A., Jajack A. J., Tomko, P.M., Rosselot, A.E., Gribbins, K.M. & Benoit, J.B. (2012) Pollen feeding in Balaustium murorum (Acari: Erythraeidae): visualization and behaviour. International Journal of Acarology, 38, 641–647. https://doi.org/10.1080/01647954.2012.733024
  80. Yu, T.T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116, 11345–11350. https://doi.org/10.1073/pnas.1821292116
  81. Zink, A.G. (2000) The evolution of intraspecific brood parasitism in birds and insects. The American Naturalist, 155 (3), 395–405. https://doi.org/10.1086/303325