Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-28
Page range: 47-72
Abstract views: 111
PDF downloaded: 5

Old collections, new taxa: late Carboniferous (Moscovian) roachoids (stem group Dictyoptera) among plants with insect interactions from the Benxi Formation, China, stored in European museums

Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden
Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden
Earth and History of Life O.D., Royal Belgian Institute of Natural Sciences, rue Vautier 29, B 1000 Brussels, Belgium
Géosciences Rennes, Univ Rennes, CNRS, UMR 6118, Avenue du Général Leclerc 263, 3500 Rennes, France
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
Polyneoptera Holopandictyoptera Pennsylvanian North China Plate plant-insect interactions palaeoecology Moscovian stem group Dictyoptera

Abstract

The late Carboniferous (Pennsylvanian) witnessed the intensification of climatic gradients with the onset of the Late Paleozoic Ice Age. During this time, high latitudes were characterized by the spread of ice sheets, whereas the palaeotropics hosted the emergence of vast, verdant, coal-forming, swamp forests. Not only were the planet’s landscapes transformed through proliferation and diversification of vascular plants, but the evolution of diverse insect groups, including ‘primitive’ roachoids, reconfigured the terrestrial fauna. Here, we re-examine and describe new roachoid taxa from Moscovian strata of the Benxi Formation. The studied insect material was sourced from early 20th century collections held in the Swedish Museum of Natural History and the Royal Belgian Institute of Natural Sciences, and is co-preserved with a broad array of plant fossils—some with evidence of herbivory damage. Our findings introduce Tangshanblatta inexpectata gen. et sp. nov. (Phyloblattidae), Pseudaphtoromylacris paucinervis gen. et sp. nov. (in the family Pseudaphtoromylacridae, fam. nov.), Spilarchimylacris kaipingense sp. nov. (Archimylacridae), and Etomylacris straeleni sp. nov. and Sooblattella ater sp. nov. (both Mylacridae). We establish Pseudaphtoromylacridae on the basis of several new characters that clearly differentiate it from related families. Etomylacris is restored from synonymy with Mylacris. The co-preserved plant fossils reveal a rich palaeovegetation including pteridophytes, ‘pteridosperms’, sphenophytes, conifers, and arborescent lycophytes. The remains of these plants bear seven distinct damage types belonging to four functional feeding groups: hole feeding, margin feeding, piercing and sucking, and oviposition. This diversity of insects, plants, and herbivory strategies signifies a relatively complex food web in the Carboniferous tropical coal-forming forests of northeast China. This study also demonstrates the value of historical museum collections and the importance of inter-institutional collaboration for piecing together palaeobiodiversity and palaeoecological information from now inaccessible fossil sites.

References

  1. Bashforth, A.R. & Zodrow, E.L. (2007) Partial reconstruction and palaeoecology of Sphenophyllum costae (Middle Pennsylvanian, Nova Scotia, Canada). Bulletin of Geosciences, 82 (4), 365–382. https://doi.org/10.3140/bull.geosci.2007.04.365
  2. Bashforth, A.R., Falcon-Lang, H.J. & Gibling, M.R. (2010) Vegetation heterogeneity on a Late Pennsylvanian braided-river plain draining the Variscan Mountains, La Magdalena Coalfield, northwestern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 292 (3-4), 367–390. https://doi.org/10.1016/j.palaeo.2010.03.037
  3. Belahmira, A., Schneider, J.W., Scholze, F. & Saber, H. (2019) Phyloblattidae and Compsoblattidae (Insecta, Blattodea) from the late Carboniferous Souss basin, Morocco. Journal of Paleontology, 93 (5), 945–965. https://doi.org/10.1017/jpa.2019.20
  4. Boersma, M. (1969) Manoblatta schmidtii nov. sp., ein neuer Insekten-Flugel aus dem rheinisch-westfalischen Oberkarbon. Mededelingen Rijks Geologische Dienst, (N.S.), 20, 51–55.
  5. Bolton, H. (1912) Insect remains from the midland and South-eastern coal measures. Quarterly Journal of the Geological Society, 68, 310–323. https://doi.org/10.1144/GSL.JGS.1912.068.01-04.25
  6. Bolton, H. (1922) A monograph of the fossil insects of the British coal measures. Part II. Palaeontographical Society Monograph, 74, 81–156. https://doi.org/10.1080/02693445.1922.12035585
  7. Cao, C. & Lin, C. (1999) Crust structures and tectonic evolution of Northeast China in Mesozoic. Journal of Geoscientific Research in Northeast Asia, 2, 166–171.
  8. Carlson, E.C. (1971) The Kaiping mines, 1877–1912 (second edition). Harvard East Asian Monographs, 3, 1–235. https://doi.org/10.1163/9781684171323_002
  9. Carpenter, F.M. & Burnham, L. (1985) The geological record of insects. Annual Review of Earth and Planetary Sciences, 13, 297–314. https://doi.org/10.1146/annurev.ea.13.050185.001501
  10. Collinson, M.E., Van Bergen, P.F., Scott, A.C. & De Leeuw, J.W. (1994) The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. Geological Society, London, Special Publications, 77 (1), 31–70. https://doi.org/10.1144/GSL.SP.1994.077.01.03
  11. DiMichele, W.A. & Phillips, T.L. (1994) Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 106 (1-4), 39–90. https://doi.org/10.1016/0031-0182(94)90004-3
  12. DiMichele, W.A., Pfefferkorn, H.W. & Gastaldo, R.A. (2001) Response of Late Carboniferous and Early Permian plant communities to climate change. Annual Review of Earth and Planetary Sciences, 29 (1), 461–487. https://doi.org/10.1146/annurev.earth.29.1.461
  13. DiMichele, W.A., Phillips, T.L. & Pfefferkorn, H.W. (2006) Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica. Journal of the Torrey Botanical Society, 133 (1), 83–118. https://doi.org/10.3159/1095-5674(2006)133[83:POLPPF]2.0.CO;2
  14. DiMichele, W.A., Wagner, R.H., Bashforth, A.R. & Álvarez-Vázquez, C. (2013) An update on the flora of the Kinney Quarry of Central New Mexico (Upper Pennsylvanian), its preservational and environmental significance. In: Lucas, S.G. et al. (Eds), Carboniferous-Permian Transition in Central New Mexico. New Mexico Museum of Natural History and Science, Bulletin, 59, pp. 289–325.
  15. Donovan, M.P, DiMichele, W.A., Lucas, S.G. & Schneider, J.W. (2021) Atlas of selected Kinney Quarry plant fossils, Late Pennsylvanian, Central New Mexico. In: Lucas, S.G., DiMichele, W.A. & Allen, B.D. (Eds), Kinney Brick Quarry Lagerstätte. New Mexico Museum of Natural History and Science Bulletin, 84, pp. 153–183.
  16. Durden, C.J. (1969) Pennsylvanian correlation using blattoid insects. Canadian Journal of Earth Sciences, 6 (5), 1159–1177. https://doi.org/10.1139/e69-117
  17. Falcon-Lang, H.J. & DiMichele, W.A. (2010) What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25 (9), 611–617. https://doi.org/10.2110/palo.2009.p09-162r
  18. Falcon-Lang, H.J. & Scott, A.C. (2000) Upland ecology of some Late Carboniferous cordaitalean trees from Nova Scotia and England. Palaeogeography, Palaeoclimatology, Palaeoecology, 156 (3-4), 225–242. https://doi.org/10.1016/S0031-0182(99)00142-X
  19. Fielding, C.R., Frank, T.D& Isbell, J.L. (2008) The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. In: Fielding, C.R., Frank, T.D. & Isbell, J.L. (Eds), Resolving the Late Paleozoic ice age in time and space. Geological Society of America, Special Paper, 441, pp. 343–354. https://doi.org/10.1130/2008.2441(24)
  20. Garwood, R. & Sutton, M. (2010) X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects. Biology letters, 6 (5), 699–702. https://doi.org/10.1098/rsbl.2010.0199
  21. Gastaldo, R.A., Bamford, M., Calder, J., DiMichele, W.A., Ianuzzi, R., Jasper, A., Kerp, H., McLoughlin, S., Opluštil, S., Pfefferkorn, H.W., Roessler, R. & Wang, J. (2020a) UNIT 12: The non-analog vegetation of the late Paleozoic icehouse–hothouse and their coal-forming forested environments. In: Martinetto, E. Tschopp, E. & Gastaldo, R.A. (Eds), Nature Through Time. Springer Verlag, Berlin, pp. 291–316. https://doi.org/10.1007/978-3-030-35058-1_12
  22. Gastaldo, R.A., Bamford, M., Calder, J., DiMichele, W.A., Ianuzzi, R., Jasper, A., Kerp, H., McLoughlin, S., Opluštil, S., Pfefferkorn, H.W., Roessler, R. & Wang, J. (2020b) UNIT 13: The coal farms of the Late Paleozoic. In: Martinetto, E., Tschopp, E. & Gastaldo, R.A. (Eds), Nature Through Time. Springer Verlag, Berlin, pp. 317–343. https://doi.org/10.1007/978-3-030-35058-1_13
  23. Grimaldi, D. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, NY, USA, 755 pp.
  24. Guo, Y.X., Béthoux, O., Gu, J.J. & Ren, D. (2013) Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). Journal of Systematic Palaeontology, 11 (1), 41–46. https://doi.org/10.1080/14772019.2011.637519
  25. Halle, T.G. (1927) Palaeozoic plants from Central Shansi. Palaeontologia Sinica, (A), 2, 1–316.
  26. Han, J., Zhang, H.W., Liang, B., Rong, H., Lan, T.W., Liu, Y.Z. & Ren, T. (2016) Influence of large syncline on in situ stress field: A case study of the Kaiping Coalfield, China. Rock Mechanics and Rock Engineering, 49, 4423–4440. https://doi.org/10.1007/s00603-016-1039-4
  27. Handlirsch, A. (1906) Revision of American Paleozoic insects. Proceedings of the United States National Museum, 29, 661–820. https://doi.org/10.5479/si.00963801.29-1441.661
  28. Handlirsch, A. (1920) Beiträge zur Kenntnis der palaeozoischen Blattarien. Sitzungsberichte der Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse in Wien, (1), 129, 431–461.
  29. Hilton, J. & Cleal, C.J. (2007) The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implications. Earth-Science Reviews, 85 (3-4), 85–116. https://doi.org/10.1016/j.earscirev.2007.07.003
  30. Hong, Y.C. (1980) The discovery of new Late Palaeozoic insects in Shanxi Province. Geological Review, 26 (2), 90–95.
  31. Hong, Y.C. (1985a) New fossil genera and species of Shanxi Formation in Xishan of Taiyuan. Entomotaxonomia, 7 (2), 83–91.
  32. Hong, Y.C. (1985b) Insecta. In: Tianjing Institute of Geology and Mineral Resources (Ed.), Palaeontological atlas of North China. 1. Paleozoic volume. Geological Publishing House, Beijing, pp. 489–510.
  33. Hornig, M.K., Haug, C., Schneider, J.W. & Haug, J.T. (2018) Evolution of reproductive strategies in dictyopteran insects-clues from ovipositor morphology of extinct roachoids. Acta Palaeontologica Polonica, 63 (1), 1–24. https://doi.org/10.4202/app.00324.2016
  34. Huang, B.C., Yan, Y.G., Piper, J.D., Zhang, D.H., Yi, Z.Y., Yu, S. & Zhou, T.H. (2018) Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186, 8–36. https://doi.org/10.1016/j.earscirev.2018.02.004
  35. Huang, D.Y., Su, Y.T., Li, X.R. & Wang, X.D. (2018) A new dictyopteran fossil from the Carboniferous–Permian of Xishan (Beijing) with discussions on the Geological ages of insect fossils from Beijing. Acta Palaeontologica Sinica, 57 (4), 474–480.
  36. Huang, D.Y., Wei, G., Wei, T., Yi, W., Wang, X.D. & Li, X.R. (2022) New dictyopteran fossils from the Pennsylvanian of West Beijing, China. Palaeoentomology, 5 (2), 161–166. https://doi.org/10.11646/palaeoentomology.5.2.9
  37. International Commission on Zoological Nomenclature (1999) International code of zoological nomenclature. Fourth Edition. i–xxix, 1–306.
  38. Jarzembowski, E.A. & Schneider, J.W. (2007) The stratigraphical potential of blattodean insects from the late Carboniferous of southern Britain. Geological Magazine, 144 (3), 449–456. https://doi.org/10.1017/S0016756807003421
  39. Kerp, H. & Barthel, M. (1993) Problems of cuticular analysis of pteridosperms. Review of Palaeobotany and Palynology, 78, 1–18. https://doi.org/10.1016/0034-6667(93)90014-L
  40. Kluge, N.J. (2010) Circumscriptional names of higher taxa in Hexapoda. Bionomina, 1, 15–55. https://doi.org/10.11646/bionomina.1.1.3
  41. Kŭsta, J. (1883) Über einige neue böhmische Blattinen. Sitzungsberichte der Königliche Böhmischen Gesellschaft der Wissenschaften, Pragae, 1883, 211–215.
  42. Laaß, M. & Hauschke, N. (2019) Earliest record of exophytic insect oviposition on plant material from the latest Pennsylvanian (Gzhelian, Stephanian C) of the Saale Basin, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109337. https://doi.org/10.1016/j.palaeo.2019.109337
  43. Laaß, M. & Hoff, C. (2015) The earliest evidence of damselfly-like endophytic oviposition in the fossil record. Lethaia, 48 (1), 115–124. https://doi.org/10.1111/let.12092
  44. Labandeira, C.C., Wilf, P., Johnson, K.R. & Marsh, F. (2007) Guide to insect (and other) damage types on compressed plant fossils. Smithsonian Institution, National Museum of Natural History, Department of Paleobiology, Washington, D.C.
  45. Labandeira, C.C. (2006) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64, 53–94. https://doi.org/10.3897/asp.64.e31644
  46. Lara, M.B. Cariglino, B. & Zavattieri, A.M. (2023) Late Paleozoic–Early Mesozoic insects: state of the art on paleoentomological studies in southern South America. Ameghiniana, 60 (5), 418–449. https://doi.org/10.5710/AMGH.03.05.2023.3545
  47. Laurentiaux, D. (1958) Contribution à l’étude des insectes carbonifères. Thèse de Doctorat d’Etat, unpublished, Université de Paris, 785 pp.
  48. Laurentiaux, D. (1959) La reproduction chez les insectes blattaires du Carbonifère, facteurs du panchronisme et classification naturelle de l’ordre. Bulletin de la Société Géologique de France, (7), 1, 759–766. https://doi.org/10.2113/gssgfbull.S7-I.7.759
  49. Laurentiaux, D. (1967) Révision du genre Archimylacris Scudder (Insectes Blattaires Archimylacridae) et description d’un genre nouveau westphalien de sa descendance. Annales de l’Université et ARERS, 5, 59–64.
  50. Laurentiaux, D. & Teixeira, C. (1950) Novos blatidios fosseis das Bacias de Valongo (Portugal) e de Saint-Eloy-les-Mines. Comunicações dos Serviços Geológicos de Portugal, 31, 299–308.
  51. Laurentiaux-Vieira, F. & Laurentiaux, D. (1987) Un remarquable Archimylacridae du Westphalien inférieur belge. Ancienneté du dimorphisme sexuel des blattes. Annales de la Société Géologique du Nord, 106, 37–47.
  52. Lesqueneux, L. (1860) Botanical and palaeontological report on the geological States survey of Arkansas. Owen Second Report of the Geological Recognition of Arkansas, Philadelphia, 293–399. https://doi.org/10.5962/bhl.title.62377
  53. Li, X.R. (2024) Classifying cockroaches according to forewings: pitfalls and implications for fossil systematics. Taxonomy, 4, 618–632. https://doi.org/10.3390/taxonomy4030031
  54. Li, X.R., Zheng, Y.H., Wang, C.C. & Wang, Z.Q. (2018) Old method not old-fashioned: parallelism between wing venation and wing-pad tracheation of cockroaches and a revision of terminology. Zoomorphology, 137 (4), 519–533. https://doi.org/10.1007/s00435-018-0419-6
  55. Lin, Q.-B (1978) On the fossil Blattoidea of China. Acta Entomologica Sinica, 21 (3), 335–342.
  56. Mathieu, F.-F. (1923) La géologie et les richesses de minières de la Chine. Publications de l’Association des Ingénieurs de l’École des Mines de Mons, 1923 (3), 281–529.
  57. Mathieu, F.-F. (1928) Note préliminaire sur la stratigraphie du Bassin Houiller de Kaïping (Chine). In: Mathieu, F.-F., Delépine, G. & Pruvost, P. (Eds), Observations sur le terrain houiller de Kaïping (Chine). Annales de la Société Géologique du Nord, 52 (pro 1927), pp. 159–166.
  58. Mathieu, F.-F. (1939) La stratigraphie du bassin houiller de Kaiping (Chine). Patrimoine du Musée royal d’Histoire naturelle de Belgique, Brussels, 48 pp.
  59. Mottequin, B. & Robin, N. (2023) Rediscovery of the Mathieu collection of Carboniferous (Pennsylvanian)–Permian (Cisuralian) arthropods from the Kaiping Coalfield (northeastern China). Geologica Belgica, 26 (1-2), 7992. https://doi.org/10.20341/gb.2023.006
  60. Nel, A., Garrouste, R. & Jouault, C. (2023) New insects (Paoliida, Dictyoptera) from the Carboniferous outcrop of Tante Victoire in Var (France). Alcheringa, 47 (3), 305–314. https://doi.org/10.1080/03115518.2023.2258977
  61. Nel, A., Santos, A.A., Hernández-Orúe, A., Wappler, T. & Diez, J.B. (2022) The first representative of the roachoid family Spiloblattinidae (Insecta, Dictyoptera) from the Late Pennsylvanian of the Iberian Peninsula. Insects, 13, 828. https://doi.org/10.3390/insects13090828
  62. Nel, P., Bertrand, S. & Nel, A. (2018) Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Scientific Reports, 8 (1), 3516. https://doi.org/10.1038/s41598-018-21938-1
  63. Opluštil, S., Cleal, C.J., Wang, J. & Wan, M.L. (2021) Carboniferous macrofloral biostratigraphy: an overview. Geological Society, London, Special Publications, 2021 (1), 813–863. https://doi.org/10.1144/SP512-2020-97
  64. Özdikmen, H. (2009) A new name, Miroblattites for the preoccupied genus Miroblatta Laurentiaux-Vieira & Laurentiaux, 1987 (Blattodea: Archimylacridae). Munis Entomology & Zoology, 4 (2), 608.
  65. Papier, F. & Nel, A. (2001) Les Subioblattidae (Blattodea, Insecta) du Trias d’Asie Centrale. Paläontologische Zeitschrift, 74 (4), 533–542. https://doi.org/10.1007/BF02988160
  66. Pott, C., McLoughlin, S. & Lindstrom, A. (2010) Late Palaeozoic foliage from China displays affinities to Cycadales rather than to Bennettitales necessitating a re-evaluation of the Palaeozoic Pterophyllum species. Acta Palaeontologica Polonica, 55, 157–168. https://doi.org/10.4202/app.2009.0070
  67. Prevec, R., Nel, A., Day, M.O., Muir, R.A., Matiwane, A., Kirkaldy, A.P., Moyo, S., Staniczek, A., Cariglino, B., Maseko, Z., Kom, N., Rubidge, B.S., Garrouste, R., Holland, A. & Barber-James, H.M. (2022) South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail. Communications Biology, 5, 1154. https://doi.org/10.1038/s42003-022-04132-y
  68. Prokop, J., Krzemiński, W., Krzemińska, E., Hörnschemeyer, T., Ilger, J.-M., Brauckmann, C., Grandcolas, P. & Nel, A. (2014) Late Palaeozoic Paoliida is the sister group of Dictyoptera (Insecta: Neoptera). Journal of Systematic Palaeontology, 12 (5), 601–622. https://doi.org/10.1080/14772019.2013.823468
  69. Pruvost, P. (1912) Les insectes houillers du Nord de la France. Annales de la Société Géologique du Nord, 41, 323–380.
  70. Pruvost, P. (1919) Introduction à l’étude du terrain houiller du Nord et du Pas-de-Calais. La faune continentale du terrain houiller du Nord de la France. Mémoires pour servir à l’Explication de la Carte Géologique de la France, 584 pp.
  71. Pruvost, P. (1928) La faune du terrain houiller de Bruay dans le Bassin de Kaïping (Chine). In: Mathieu, F.-F., Delépine, G. & Pruvost, P. (Eds), Observations sur le terrain houiller de Kaïping (Chine). Annales de la Société Géologique du Nord, 52 (pro 1927), pp. 168–173.
  72. Pruvost, P. (1930) Description de la faune continentale du terrain houiller de la Belgique. Mémoire du Muséum d’Histoire Naturelle de Bruxelles, 44, 103–280.
  73. Raymond, A. (1988) The paleoecology of a coal-ball deposit from the Middle Pennsylvanian of Iowa dominated by cordaitalean gymnosperms. Review of Palaeobotany and Palynology, 53 (3-4), 233–250. https://doi.org/10.1016/0034-6667(88)90034-6
  74. Ross, A.J. (2012) Testing decreasing variability of cockroach forewings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Science, 19, 129–142. https://doi.org/10.1111/j.1744-7917.2011.01465.x
  75. Santos, A.A., Hernández-Orúe, A., Wappler, T. & Diez, J. B. (2022) Plant–insect interactions from the Late Pennsylvanian of the Iberian Peninsula (León, northern Spain). Review of Palaeobotany and Palynology, 301, 104658. https://doi.org/10.1016/j.revpalbo.2022.104658
  76. Santos, A.A., Hernández Orúe, A., Wappler, T., Peñalver, E., Díez, J.B. & Nel, A. (2023) Late Carboniferous insects from the Iberian Peninsula: State of the art and new taxa. Palaeontographica, A, 326, 1–27. https://doi.org/10.1127/pala/2022/0135
  77. Santos, A.A., Wappler, T. & McLoughlin, S. (2024) Earliest evidence of granivory from China (Shanxi Formation) points to seeds as a food source and nursing habitat for insects in the earliest Permian humid tropical forests of Cathaysia. PLoS One, 19 (10), e0311737. https://doi.org/10.1371/journal.pone.0311737
  78. Schenck, A. (1883) Pflanzen aus der Steinkohlenformation. In: Richthofen, F. von China. Ergebnisse eigener reisen und darauf gegründeter Studien, 4, 211–244.
  79. Schneider, J.W. (1983) Die Blattodea (Insecta) des Paläozoikums, 1: Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte, C, 382, 107–146.
  80. Schneider, J.W. & Rößler, R. (2023) The early history of giant cockroaches: gyroblattids and necymylacrids (Blattodea) of the Late Carboniferous. Diversity, 15 (429), 1–41. https://doi.org/10.3390/d15030429
  81. Schneider, J.W., Lucas, S.G. & Rowland, J.M. (2004) The Blattida (Insecta) fauna of Carrizo Arroyo, New Mexico—Biostratigraphic link between marine and nonmarine Pennsylvanian/Permian boundary profiles. In: Lucas, S.G. & Zeigler, K.E. (Eds), Carboniferous-Permian transition at Carrizo Arroyo, Central New Mexico. Bulletin of the New Mexico Museum of Natural History and Science, 25, pp. 247–262.
  82. Schneider, J.W., Scholze, F., Germann, S. & Lucas, S.G. (2021a) The Late Pennsylvanian nearshore insect fauna of the Kinney Brick Quarry invertebrate and vertebrate fossil lagerstätte, New Mexico. New Mexico Museum of Natural History and Science Bulletin, 84, 255–285.
  83. Schneider, J.W., Scholze, F., Ross, A.J., Blake, B.M., Jr. & Lucas, S.G. (2021b) Improved blattoid insect and conchostracan zonation for the late Carboniferous, Pennsylvanian, of Euramerica. The Geological Society Special Publications, 512, 1–27. https://doi.org/10.1144/SP512-2021-93
  84. Schubnel, T. (2021) L’évolution des insectes passée aux rayons X: étude des homologies de nervation alaire via la μCT et le registre fossile. PhD Thesis, unpublished Muséum national d’Histoire naturelle, Paris, 1–208.
  85. Schubnel, T., Desutter-Grandcolas, L., Legendre, F., Prokop, J., Mazurier, A., Garrouste, R., Grandcolas, P. & Nel, A. (2020) To be or not to be: postcubital vein in insects revealed by microtomography. Systematic Entomology, 45, 327–336. https://doi.org/10.1111/syen.12399
  86. Scudder, S.H. (1868) Supplement to descriptions of Articulates. Descriptions of fossil insects, found on Mazon Creek, and near Morris, Grundy Co., Illinois. Geological Survey of Illinois, 3, 566–572.
  87. Scudder, S.H. (1879) Palaeozoic cockroaches: a complete revision of the species of both Worlds, with an essay towards their classification. Memoirs of the Boston Society of Natural History, 3, 23–134.
  88. Scudder, S.H. (1890) New types of cockroaches from the Carboniferous deposits of the U.S.A. Memoirs of the Boston Society of Natural History, 4 (9), 401–415.
  89. Shen, B.H., Shen, S.Z., Wu, Q., Zhang, S.C., Zhang, B., Wang, X.D., Hou, Z.S., Yuan, D.X., Zhang, Y.C., Liu, F., Liu, J., Zhang, H., Shi, Y.K., Jun Wang, J. & Feng, Z. (2022) Carboniferous and Permian integrative stratigraphy and timescale of North China Block. Science China Earth Sciences, 65 (6), 983–1011. https://doi.org/10.1007/s11430-021-9909-9
  90. Shen, B.H., Hou, Z.S., Wang, X.D., Wu, Q., Zhang, H., Chen, J.T., Yuan, D.X., Hu, B., Sun, B.L. Shen, S.Z. (2024) Quantitative palaeogeographical reconstruction of the North China Block during the Carboniferous and Permian transition: Implications for coal accumulation and source rock development. Palaeogeography, Palaeoclimatology, Palaeoecology, 640, 112102. https://doi.org/10.1016/j.palaeo.2024.112102
  91. Shi, G.R., Waterhouse, J.B. & McLoughlin, S. (2010) The Lopingian of Australasia: a review of biostratigraphy, correlations, palaeogeography and palaeobiogeography. Geological Journal, 45, 230–263. https://doi.org/10.1002/gj.1213
  92. Stockmans, F. & Mathieu, F.-F. (1939) La flore paléozoïque du bassin houiller de Kaiping (Chine). Patrimoine du Musée royal d’Histoire naturelle de Belgique, Brussels, pp. 49–164.
  93. Stockmans, F. & Mathieu, F.-F. (1957) La flore paléozoïque du bassin houiller de Kaiping (Chine). (Deuxième partie). Publication de l’Association pour l’Étude de la Paléontologie et de la Stratigraphie houillères, 32, 1–89.
  94. Sun, K. (1999) Origin, evolution and extinction of Cathaysia flora. Chinese Science Bulletin, 44 (2), 100–108. https://doi.org/10.1007/BF02884727
  95. Taylor, E.L., Taylor, T.N. & Krings, M. (2009) Paleobotany: the biology and evolution of fossil plants. Academic Press, Amsterdam, Boston, 1230 pp. https://doi.org/10.1016/B978-0-12-373972-8.00001-2
  96. Wang, X.D., Hu, K.Y., Qie, W.K., Sheng, Q.Y., Chen, B., Lin, W., Yao, L., Wang, Q.L., Qi, Y.P., Chen, .T., Liao, Z.T. & Song, J.J. (2019) Carboniferous integrative stratigraphy and time scale of China. Science China-Earth Sciences, 62, 135–153. https://doi.org/10.1007/s11430-017-9253-7
  97. Wang, Y.H., Wan, M.L., Zhang, H., Cai, C.Y. & Huang, D.Y. (2022) Palaeozoic insects from China with discussion on their ages. Palaeoentomology, 5 (4), 362–377. https://doi.org/10.11646/palaeoentomology.5.4.9
  98. Wilson, J.P., Montañez, I.P., White, J.D., DiMichele, W.A., McElwain, J.C., Poulsen, C.J. & Hren, M.T. (2017) Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist, 215 (4), 1333–1353. https://doi.org/10.1111/nph.14700
  99. Zhang, S.X. (Ed.) (2009) Geological formation names of China (1866–2000). Higher Education Press, Beijing and Springer-Verlag, Berlin, 1650 pp. https://doi.org/10.1007/978-3-540-93824-8
  100. Zhang, Z.J., Schneider, J.W. & Hong Y.C. (2013) The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. Journal of Systematic Palaeontology, 11 (1), 27–40. https://doi.org/10.1080/14772019.2011.634443
  101. Zeh, D.W., Zeh, J.A. & Smith, R.L. (1989) Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods. The Quarterly Review of Biology, 64 (2), 147–168. https://doi.org/10.1086/416238
  102. Zodrow, E.L. (2007) Reconstructed tree fern Alethopteris zeilleri (Carboniferous, Medullosales). International Journal of Coal Geology, 69 (1-2), 68–89. https://doi.org/10.1016/j.coal.2006.03.009