Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-29
Page range: 147-156
Abstract views: 7
PDF downloaded: 0

Ichnotaxonomy of new boring taxa: linking insect activity and fossil resins formation

University of Gdańsk, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, 59 Wita Stwosza St., 80-309 Gdańsk, Poland
University of Gdańsk, Laboratory of Parasitology and General Zoology, Faculty of Biology, 59 Wita Stwosza St., 80-309 Gdańsk, Poland
University of Gdańsk, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, 59 Wita Stwosza St., 80-309 Gdańsk, Poland
Baltic amber fossil resins succinite Talpinidae taphonomy xylite

Abstract

The fossil record reveals palaeoecological interactions between plants and insects. This study describes a singular conifer xylite specimen from the Baltic amber-bearing deposits, with preserved resin ducts and cylindrical insect borings designated as Bivium ichnogen. nov. with Bivium diluviandi ichnosp. nov. The borings, characterized by longitudinal tunnels connected by cross tunnels and chambers, were likely created by xylophagous beetles belonging to the family Curculionidae (subfamily Scolytinae). The associated resin production reflects an adaptive plant response to insect and fungal activity, evidenced by fungal hyphae preserved within the specimen. This work contributes to the knowledge of Baltic amber stratigraphy, and the formation of resin-bearing deposits, and shows, that the wood-boring insects may have been a cause, among others, of resin exudation.

References

  1. Aleksandrova, G.N. & Zaporozhets, N.I. (2008) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 1. Stratigraphy and Geological Correlation, 16 (3), 295–316. https://doi.org/10.1134/S0869593808030052
  2. Bechtel, A., Widera, M., Lücke, A., Groß, D. & Woszczyk, M. (2020) Petrological and geochemical characteristics of xylites and associated lipids from the First Lusatian lignite seam (Konin Basin, Poland): Implications for floral sources, decomposition and environmental conditions. Organic Geochemistry, 147, 104052, 1–16. https://doi.org/10.1016/j.orggeochem.2020.104052
  3. Biswas, A., Bera, M., Khan, M.A., Spicer, R.A., Spicer, T.E.V., Acharya, K. & Bera, S. (2020) Evidence of fungal decay in petrified legume wood from the Neogene of the Bengal Basin, India. Fungal Biology, 124 (11), 958–968. https://doi.org/10.1016/j.funbio.2020.08.003
  4. Björdal, C.G. (2012) Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage, 13 (3), S118–S122. https://doi.org/10.1016/j.culher.2012.02.003
  5. Buatois, L.A., Wisshak, M., Wilson, M.A. & Mángano, M.G. (2017) Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews, 164, 102–181. https://doi.org/10.1016/j.earscirev.2016.08.009
  6. Buurman, P. (1972) Mineralization of fossil wood. Scripta Geologica, 12, 1–43.
  7. Cabrita, P. (2021) A model for resin flow. In: Ramawat, K.G., Ekiet, H.M. & Goyal, S. (Eds), Plant cell and tissue differentiation and secondary metabolites. Fundamentals and applications. Reference series in phytochemistry. Springer Nature Switzerland AG, Cham, pp. 117–144. https://doi.org/10.1007/978-3-030-30185-9_5
  8. Câmara, J.S., Perestrelo, R., Ferreira, R., Berenguer, C.V., Pereira, J.A.M. & Castilho, P.C. (2024) Plant-derived terpenoids: a plethora of bioactive compounds with several health functions and industrial applications—a comprehensive overview. Molecules, 29 (16), 3861, 1–35. https://doi.org/10.3390/molecules29163861
  9. Cognato, A.I. & Grimaldi, D. (2009) 100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology, 34 (1), 93–100. https://doi.org/10.1111/j.1365-3113.2008.00441.x
  10. Dominik, J. & Starzyk, J.R. (2004) Owady uszkadzające drewno, [Wood-damaging insects]. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 550 pp. [In Polish]
  11. Dominik, J. & Starzyk, J.R. (2010) Atlas owadów uszkadzających drewno [Atlas of wood-damaging insects]. Vols. 1 & 2. Multico Oficyna Wydawnicza, Warszawa, 240+232 pp. [In Polish]
  12. Donovan, S.K., Jagt, J.W.M. & Nieuwenhuis, E.A.P.M. (2015) The boring Cunctichnus probans Fürsich, Palmer and Goodyear, 1994, from the type Maastrichtian (Upper Cretaceous, Northeast Belgium). Ichnos: An International Journal of Plant and Animal, 22 (1), 19–21.
  13. https://doi.org/10.1080/10420940.2014.988211
  14. Drohojowska, J., Zmarzły, M. & Szwedo, J. (2024) The discovery of a fossil whitefly from Lower Lusatia (Germany) presents a challenge to current ideas about Baltic amber. Scientific Reports, 14, 23102, 1–9. https://doi.org/10.1038/s41598-024-74197-8
  15. Eriksson, K.-E.L., Blanchette, R.A. & Ander, P. (1990) Morphological aspects of wood degradation by fungi and bacteria. In: Eriksson, K.E.L., Blanchette, R.A. & Ander, P. (2012) Microbial and enzymatic degradation of wood and wood components. Springer Science & Business Media, Berlin/Heidelberg, pp. 1–87. https://doi.org/10.1007/978-3-642-46687-8_1
  16. Feng, Z., Bertling, M., Noll, R., Ślipiński, A. & Rößler, R. (2019) Beetle borings in wood with host response in early Permian conifers from Germany. Paläontologisches Zeitschrift, 93 (3), 409–421. https://doi.org/10.1007/S12542-019-00476-9
  17. Feng, Z., Wang, J., Zhou, W.M., Wan, M.L. & Pšenička, J. (2021) Plant-insect interactions in the early Permian Wuda Tuff Flora, North China. Review of Palaeobotany and Palynology, 294, 104269, 1–12. https://doi.org/10.1016/j.revpalbo.2020.104269
  18. Fengel, D. (1991) Aging and fossilization of wood and its components. Wood Science and Technology, 25 (3), 153–177. https://doi.org/10.1007/BF00223468
  19. Fergusson, D.K. (2005) Plant taphonomy: ruminations on the past, the present, and the future. Palaios, 20 (5), 418–428. https://doi.org/10.2110/palo.2005.P05-25p
  20. Florjan, S. & Worobiec, G. (2016) Skamieniałości roślinne: zarys tafonomii roślin [Plant fossils: an outline of plant taphonomy]. Instytut Botaniki im. W. Szafera Polskiej Akademii Nauk, Kraków, 220 pp. [In Polish]
  21. Franceschi, V.R., Krokene, P., Christiansen, E. & Krekling, T. (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167, 353–376. https://doi.org/10.1111/j.1469-8137.2005.01436.x
  22. Fürsich, F.T., Palmer, T.J. & Goodyear, K.L. (1994) Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of southern England. Palaeontology, 37, 131–171. https://biostor.org/reference/166064
  23. Genise, J.F. (1995) Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos: An International Journal of Plant & Animal Traces, 3 (4), 287–299. https://doi.org/10.1080/10420949509386399
  24. Greppi, C.D., García Massini, J.L. & Pujana, R.R. (2021) Saproxylic arthropod borings in Nothofagoxylon woods from the Miocene of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 571, 110369, 1–18. https://doi.org/10.1016/j.palaeo.2021.110369
  25. Hulcr, J., Atkinson, T.H., Cognato, A.I., Jordal, B.H. & McKenna, D.D. (2015) Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega, F.E. & Hofstetter, R.W. (Eds), Bark beetles. Biology and ecology of native and invasive species. Elsevier/Academic Press, London, pp. 41–84. https://doi.org/10.1016/B978-0-12-417156-5.00002-2
  26. ICZN [International Commission on Zoological Nomenclature] (1999) International code of zoological nomenclature. Fourth Edition. The International Trust for Zoological Nomenclature, London, xxix + 306 pp. Available from: https://code.iczn.org/ (accessed 13.11.2024 ).
  27. Karpiński, J.J. (1962) Odlew żerowisk kopalnego chrząszcza z rodziny Scolytidae z piaskowca oligomioceńskiego w Osieczowie (Dolny Śląsk) [Cast of the brood galleries of fossil beetle of the Scolytidae family from Oligocene/Miocene sandstone at Osieczów (Lower Silesia)]. Prace Państwowego Instytu Geologicznego, 30, 237–239. [In Polish]
  28. Kharin, G.S. & Eroshenko, D.V. (2017) Amber in sediments of the Baltic Sea and the Curonian and Kaliningrad bays. Lithology and Mineral Resources, 52 (5), 392–400. https://doi.org/10.1134/s0024490217050054
  29. Kirkendall, L.R., Biedermann, P.H.W. & Jordal, B.H. (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega, F.E. & Hofstetter, R.W. (Eds), Bark beetles. Biology and ecology of native and invasive species. Elsevier/Academic Press, London, pp. 85–156. https://doi.org/10.1016/B978-0-12-417156-5.00003-4
  30. Kosmowska-Ceranowicz, B. (2008) Glowing stone: Amber in Polish deposits and collections. Przegląd Geologiczny, 56 (8/1), 604–610+574.
  31. Kosmowska-Ceranowicz, B. (2015) Infrared spectra of fossil, subfossil resins and selected imitations of amber. Atlas widm w podczerwieni żywic kopalnych, subfosylnych i niektórych imitacji bursztynu. In: Kosmowska-Ceranowicz, B. (Ed.), Atlas. Infrared spectra the World’s resins. Holotype characteristics / Widma IR żywic świata. Charakterystyka ich holotypów. Polska Akademia Nauk, Muzeum Ziemi w Warszawie, Warsaw, pp. 5–213.
  32. Kosmowska-Ceranowicz, B. (2017) Bursztyn w Polsce i na świecie. Amber in Poland and in the World. Second edition. Wydawnictwa Uniwersytetu Warszawskiego, Warsaw, 316 pp. [In Polish] https://doi.org/10.31338/uw.9788323526117
  33. Kuzmina, O.B. & Iakovleva, A.I. (2023) New spore and pollen data from the Upper Eocene deposits of the Sambian Peninsula, Kaliningrad Oblast. Stratigraphy and Geological Correlation, 31 (3), 200–214. https://doi.org/10.1134/S086959382303005X
  34. Kuzmina, O.B., Iakovleva, A.I. & Mychko, E.V. (2023) The age and depositional settings of the Upper Paleogene–Lower Neogene Kurshskaya Formation in its stratotype section (Kaliningrad Oblast) based on palynological data. Stratigraphy and Geological Correlation, 31 (6), 657–675. https://doi.org/10.1134/S0869593823060072
  35. Labandeira, C.C. (2014) Amber. In: Laflamme, M., Schiffbauer, J.D. & Darroch, S.A.F. (Eds), Reading and writing of the fossil record: Preservational pathways to exceptional fossilization Presented as a Paleontological Society Short Course at the Annual Meeting of the Geological Society of America, Vancouver, British Columbia, October 18, 2014. Paleontological Society Papers, 20, 163–216. https://doi.org/10.1017/S108933260000276X
  36. Labandeira, C.C., LePage, B.A. & Johnson, A.H. (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? American Journal of Botany, 88 (11), 2026–2039. https://doi.org/10.2307/3558429
  37. Langenheim, J.H. (2003) Plant resins: chemistry, evolution, ecology and ethnobotany. Timber Press, Portland, 612 pp.
  38. Legalov, A.A. (2024) Fossil history of bark-beetles (Coleoptera: Scolytidae) with descriptions of two new species. Historical Biology, 36 (2), 378–388. https://doi.org/10.1080/08912963.2022.2157275
  39. Mayer, G. (1952) Neue Lebensspuren aus dem Unteren Hauptmuschelkalk (Trochitenkalk) von Wiesloch: Coprulus oblongus n. sp. und C. sphaeroideus n. sp. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1952, 376–379.
  40. McLoughlin, S. (2020) Marine and terrestrial invertebrate borings and fungal damage in Paleogene fossil woods from Seymour Island, Antarctica. GFF, 142 (3), 223–236. https://doi.org/10.1080/11035897.2020.1781245
  41. Murthy, H.N. (Ed.) (2022) Gums, resins and latexes of plant origin. Chemistry, biological activities and uses. Springer Nature Switzerland AG, Cham, 912 pp. https://doi.org/10.1007/978-3-030-91378-6
  42. Mustoe, G.E. (2017) Wood petrifaction: a new view of permineralization and replacement. Geosciences, 7 (4), 119, 1–17. https://doi.org/10.3390/geosciences7040119
  43. Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T. & Christiansen, E. (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. American Journal of Botany, 87 (3), 302–313. https://doi.org/10.2307/2656626
  44. Nagy, N.E., Norli, H.R., Fongen, M., Østby, R.B., Heldal, I.M., Davik, J. & Hietala, A.M. (2022) Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce. Planta, 255 (3), 1–16. https://doi.org/10.1007/s00425-022-03842-1
  45. Olszak, I.J., Florek, W., Seul, C. & Majewski, M. (2011) Lithology of sediments and stratigraphy of glacial layers of some cliff sections on central and western Polish Coast. Geologija, 53 (1/73), 1–9. https://doi.org/10.6001/geologija.v53i1.1612
  46. Penney, D. (Ed.) (2010) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, 304 pp.
  47. Peris, D., Delclòs, X. & Jordal, B. (2021) Origin and evolution of fungus farming in wood-boring Coleoptera—a palaeontological perspective. Biological Reviews, 96 (6), 2476–2488. https://doi.org/10.1111/brv.12763
  48. Perkovsky, E.E. & Makarkin, V.N. (2020) A new species of Sympherobius Banks (Neuroptera: Hemerobiidae) from the late Eocene Rovno amber. Palaeoentomology, 3 (2), 196–203. https://doi.org/10.11646/palaeoentomology.3.2.9
  49. Philippe, M., Cuny, G., Suteethorn, V., Teerarungsigul, N., Barale, G., Thévenard, F., le Loeuff, J., Buffetaut, E., Gaona, T., Košir, A. & Tong, H. (2005) A Jurassic amber deposit in southern Thailand. Historical Biology, 17 (1-4), 1–6. https://doi.org/10.1080/08912960500284729
  50. Philippe, M., McLoughlin, S., Strullu-Derrien, C., Bamford, M., Kiel, S., Nel, A. & Thévenard, F. (2022) Life in the woods: Taphonomic evolution of a diverse saproxylic community within fossil woods from Upper Cretaceous submarine mass flow deposits (Mzamba Formation, southeast Africa). Gondwana Research, 109, 113–133. https://doi.org/10.1016/j.gr.2022.04.008
  51. Piotrowski, A., Szczuciński, W., Sydor, P., Kotrys, B., Rzodkiewicz, M. & Krzymińska, J. (2017) Sedimentary evidence of extreme storm surge or tsunami events in the southern Baltic Sea (Rogowo area, NW Poland). Geological Quarterly, 61 (4), 973–986. https://doi.org/10.7306/gq.1385
  52. Piwocki, M. & Olszewska, B. (1996) Korelacja litostratygraficzna paleogenu Polski z krajami sąsiednimi. [Lithostratigraphic correlation of the Paleogene of Poland with other areas]. In: Malinowska L. & Piwocki M. (Eds), Budowa geologiczna Polski, t. III. Atlas skamieniałości przewodnich i charakterystycznych, cz. 3a. Kenozoik, Trzeciorzęd, Paleogen [Geology of Poland, vol. III. Atlas of guide and characteristic fossils, part 3a Cainozoic, Tertiary, Paleogene]. Państwowy Instytut Geologiczny, Warszawa, 37–44. [In Polish]
  53. Piwocki, M., Olszewska, B. & Grabowska, I. (1996) Korelacja biostratygraficzna paleogenu Polski z innymi obszarami. [Biostratigraphic correlation of the Paleogene of Poland with other areas]. In: Malinowska L. & Piwocki M. (Eds), Budowa geologiczna Polski, t. III. Atlas skamieniałości przewodnich i charakterystycznych, cz. 3a. Kenozoik, Trzeciorzęd, Paleogen [Geology of Poland, vol. III. Atlas of guide and characteristic fossils, part 3a Cainozoic, Tertiary, Paleogene]. Państwowy Instytut Geologiczny, Warszawa, 25–37. [In Polish]
  54. Piwocki, M., Olkowicz-Paprocka, I., Kosmowska-Ceranowicz, B., Grabowska, I. & Odrzywolska-Bienkowa, E. (1985) Stratygrafia trzeciorzędowych osadów bursztynonośnych okolic Chłapowa koło Pucka [Stratigraphy of Tertiary amber-bearing sediments in the vicinity of Chłapowo near Puck]. Prace Muzeum Ziemi, 37, 61–77. [In Polish]
  55. Ranger, C.M., Reding, M.E., Schultz, P.B., Oliver, J.B., Frank, S.D., Addesso, K.M., Chong, J.H., Sampson, B., Werle, C., Gill, S. & Krause, C. (2016) Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management, 7 (1), 9. https://doi.org/10.1093/jipm/pmw005
  56. Seyfullah, L.J., Roghi, G., Dal Corso, J. & Schmidt, A.R. (2018) The Carnian Pluvial Episode and the first global appearance of amber. Journal of the Geological Society, 175 (6), 1012–1018. https://doi.org/10.1144/jgs2017-143
  57. Simoneit, B.R.T., Otto, A., Menor-Sálvan, C., Oros, D.R., Wilde, V. & Riegel, W. (2021) Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Organic Geochemistry, 152, 104138. https://doi.org/10.1016/j.orggeochem.2020.104138
  58. Solórzano Kraemer, M.M., Delclòs, X., Clapham, M.E., Arillo, A., Peris, D., Jäger, P., Stebner, F. & Peñalver, E. (2018) Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proceedings of the National Academy of Sciences of the United States of America, 115 (26), 6739–6744. https://doi.org/10.1073/pnas.1802138115
  59. Stout, E.C., Beck, C.W. & Kosmowska-Ceranowicz, B. (1995) Gedanite and gedano-succinite. In: Anderson, K.B. & Crelling, J.C. (Eds), Amber, resinite, and fossil resins. American Chemical Society, 617, 130–148. https://doi.org/10.1021/bk-1995-0617.ch007
  60. Suárez-Ruiz, I. & Crelling, J.C. (Eds) (2008) Applied coal petrology. The role of petrology in coal utilization. Elsevier/Academic Press, Amsterdam, 388 pp.
  61. Szwedo, J. & Stroiński, A. (2017) Who’s that girl? The singular Tropiduchidae planthopper from the Eocene Baltic amber (Hemiptera: Fulgoromorpha). Palaeontologia Electronica, 20.3.60A, 1–20. https://doi.org/10.26879/784
  62. Tanner, L.H. & Lucas, S.G. (2013) Degraded wood in the Upper Triassic Petrified Forest Formation (Chinle Group), northern Arizona: differentiating fungal rot from arthropod boring. In: Tanner, L.H., Spielmann J.A. & Lucas, S.G. (Eds), The Triassic System. New Mexico Museum of Natural History and Science, Bulletin, 61, 582–588.
  63. Vávra, N. (2009) Amber, fossil resins, and copal—contributions to the terminology of fossil plant resins. Denisia, 26, 213–222.
  64. Vázquez-González, C., Zas, R., Erbilgin, N., Ferrenberg, S., Rozas, V. & Sampedro, L. (2020) Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree physiology, 40 (10), 1313–1326. https://doi.org/10.1093/treephys/tpaa064
  65. Voigt, E. (1970) Endolithische Wurm-Tunnelbauten (Lapispecus cuniculus n. g. n. sp. und Dodecaceria(?) sp.) in Brandungsgeröllen der oberen Kreide im nördlichen Harzvorlande. Geologische Rundschau, 60, 355–380. https://doi.org/10.1007/BF01820950
  66. von Hagenow, F. (1840) Monographie der Rügen’schen Kreide Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, 1839, 630–672.
  67. Walker, M.V. (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proceedings of the United States National Museum, 85 (3033), 137–141. https://doi.org/10.5479/si.00963801.85-3033.137
  68. Wagner-Wysiecka, E. (2023) Succinite, Baltic amber: a chemical masterpiece of nature. Journal of Gems & Gemmology, 25 (4), 69–87. https://doi.org/10.15964/j.cnki.027jgg.2023.04.007
  69. Werker, E. & Fahn, A. (1969) Resin ducts of Pinus halepensis Mill.—Their structure, development and pattern of arrangement. Botanical Journal of the Linnean Society, 62 (4), 379–411. https://doi.org/10.1111/j.1095-8339.1969.tb01974.x
  70. Widera, M. (2015) Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65 (3), 367–378. https://doi.org/10.1515/AGP-2015-0016
  71. Widera, M. (2016) Genetic classification of Polish lignite deposits: A review. International Journal of Coal Geology, 158, 107–118. https://doi.org/10.1016/j.coal.2016.03.004
  72. Wisshak, M., Knaust, D. & Bertling, M. (2019) Bioerosion ichnotaxa: review and annotated list. Facies, 65 (2), 1–39. https://doi.org/10.1007/s10347-019-0561-8
  73. Xu, B., Chao, J., Yang, Z.Y. & Li, W.D. (2018) The occurrence of resin canals in branches of Cedrus deodara with different inclination angles. Wood Science and Technology, 52 (2), 505–517. https://doi.org/10.1007/s00226-017-0964-z