Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-10-31
Page range: 520-537
Abstract views: 49
PDF downloaded: 3

Thripidae and Melanthripidae from the mid-Cretaceous (Insecta: Thysanoptera)

Early Life Evolution Laboratory, China University of Geosciences, Beijing 100083, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
College of Life Sciences, Capital Normal University, Beijing 100048, China
College of Life Sciences, Capital Normal University, Beijing 100048, China
Cenomanian thrips Kachin amber mesozoic insect fossils Insecta Thysanoptera

Abstract

The thrips diversity preserved in Kachin amber is remarkably high, with numerous new species awaiting discovery. In this paper, two new species of Thripidae: Euthythrips longialatus gen. et sp. nov. and Minythrips exquisitus gen. et sp. nov., plus five new species of Melanthripidae: Aspistothrips fortis gen. et sp. nov., Aspistothrips decorus sp. nov., Areiothrips bellator gen. et sp. nov., Charismathrips longiantennatus gen. et sp. nov., Charismathrips exaridus sp. nov., are systematically described, expanding the fossil record of Thysanoptera from Kachin amber. Through comparative morphological analyses of fossil taxa, we propose that two characters likely represent plesiomorphic traits of Thysanoptera: nine antennomeres and duplicated cilia arranged parallel to regular fringe cilia. By synthesizing existing research on thrips environmental interactions, this study briefly analyzes the adaptive evolution of thrips during floral ecosystem turnover.

References

  1. Bagnall, R.S. (1913) Brief descriptions of new Thysanoptera. Annals and Magazine of Natural History, ser. 8, 12, 290–299. https://biostor.org/reference/60424
  2. Bailey, S.F. (1940) A review of the genus Ankothrips D.L. Crawford. The Pan-Pacific Entomologist, 16, 97–106.
  3. Crespi, B.J. (1986) Territoriality and fighting in a colonial thrips, Hoplothrips pedicularius, and sexual dimorphism in Thysanoptera. Ecological Entomology, 11 (2), 119–130. https://doi.org/10.1111/j.1365-2311.1986.tb00286.x
  4. Grimaldi, D., Shmakov, A. & Fraser, N. (2004) Mesozoic thrips and early evolution of the order Thysanoptera (Insecta). Journal of Paleontology, 78 (5), 941–952. https://doi.org/10.1666/0022-3360(2004)078<0941:MTAEEO>2.0.CO;2
  5. Guo, D.W., Engel, M.S., Shih, C.K. & Ren, D. (2024) New stenurothripid thrips from mid-Cretaceous Kachin amber (Thysanoptera, Stenurothripidae). ZooKeys, 1192, 197–212. https://doi.org/10.3897/zookeys.1192.117754
  6. Guo, M.X., Xing, L.D., Wang, B., Zhang, W.W., Wang, S., Shi, A. & Bai, M. (2017) A catalogue of burmite inclusions. Zoological Systematics, 42 (3), 249–379. https://doi.org/10.11865/zs.201715
  7. Haliday, A.H. (1836) An epitome of the British genera, in the Order Thysanoptera, with indications of a few of the species. Entomological magazine 3, 439–451.
  8. Hussain, M., Wang, Z.H., Arthurs, S.P., Gao, J., Ye, F.X., Chen, L.L. & Mao, R.Q. (2022) A review of Franklinothrips vespiformis (Thysanoptera: Aeolothripidae): life history, distribution, and prospects as a biological control agent. Insects, 13 (2), 108. https://doi.org/10.3390/insects13020108
  9. Kasoju, V.T., Terrill, C.L., Ford, M.P. & Santhanakrishnan, A. (2018) Leaky flow through simplified physical models of bristled wings of tiny insects during clap and fling. Fluids, 3 (2), 44. https://doi.org/10.3390/fluids3020044
  10. Kirk, W.D. (1985) Aggregation and mating of thrips in flowers of Calystegia sepium. Ecological Entomology, 10 (4), 433–440. https://doi.org/10.1111/j.1365-2311.1985.tb00741.x
  11. Kolomenskiy, D., Farisenkov, S., Engels, T., Lapina, N., Petrov, P., Lehmann, F.-O., Onishi, R., Liu, H. & Polilov, A. (2020) Aerodynamic performance of a bristled wing of a very small insect: Dynamically scaled model experiments and computational fluid dynamics simulations using a revolving wing model. Experiments in Fluids, 61 (9), 194. https://doi.org/10.1007/s00348-020-03027-0
  12. Minaei, K., Haftbaradaran, F. & Mound, L. (2012) A new Ankothrips species (Thysanoptera: Melanthripidae) from Iran with unusually short setae. Zootaxa, 3552 (1), 37–42. https://doi.org/10.11646/zootaxa.3552.1.2
  13. Nel, P., Peñalver, E., Azar, D., Hodebert, G. & Nel, A. (2010) Modern thrips families Thripidae and Phlaeothripidae in Early Cretaceous amber (Insecta: Thysanoptera). Annales de la Société Entomologique de France , 46 (1-2), 154–163. https://doi.org/10.1080/00379271.2010.10697651
  14. Nel, P., Azar, D., Prokop, J., Roques, P., Hodebert, G. & Nel, A. (2012) From Carboniferous to Recent: wing venation enlightens evolution of thysanopteran lineage. Journal of Systematic Palaeontology, 10 (2), 385–399. https://doi.org/10.1080/14772019.2011.598578
  15. Nel, P., Schubnel, T., Perrichot, V. & Nel, A. (2021) Ankothrips, the most ancient extant thrips genus (Thysanoptera, Melanthripidae). Papers in Palaeontology, 7 (2), 825–837. https://doi.org/10.1002/spp2.1320
  16. O’Callaghan, F. & Lehmann, F.-O. (2023) Flow development and leading edge vorticity in bristled insect wings. Journal of Comparative Physiology A, 209 (2), 219–229. https://doi.org/10.1007/s00359-023-01617-x
  17. O’Callaghan, F., Sarig, A., Ribak, G. & Lehmann, F.-O. (2022) Efficiency and aerodynamic performance of bristled insect wings depending on Reynolds number in flapping flight. Fluids, 7 (2), 75. https://doi.org/10.3390/fluids7020075
  18. Peña-Kairath, C., Peñalver, E., Peris, D. & Delclòs, X. (2024) Swarming behaviour and pollination by Cretaceous thrips (Insecta: Thysanoptera). Palaeoentomology, 7 (6), 723–739. https://doi.org/10.11646/palaeoentomology.7.6.8
  19. Peñalver, E., Labandeira, C.C., Barrón, E., Delclòs, X., Nel, P., Nel, A., Tafforeau, P. & Soriano, C. (2012) Thrips pollination of Mesozoic gymnosperms. Proceedings of the United States National Academy of Sciences, 109 (22), 8623–8628. https://doi.org/10.1073/pnas.1120499109
  20. Peñalver, E., Peña-Kairath, C., Barrón, E., Nel, P., Nel, A., Delclòs, X., Peris, D., Solórzano-Kraemer, M.M. & Rodrigo, A. (2025) Diverse Mesozoic thrips carrying pollen during the gymnosperm-to-angiosperm plant-host ecological shift. iScience, 28 (4), 112108. https://doi.org/10.1016/j.isci.2025.112108
  21. Pereyra, V. & Mound, L.A. (2009) Phylogenetic relationships within the genus Cranothrips (Thysanoptera, Melanthripidae) with consideration of host associations and disjunct distributions within the family. Systematic Entomology, 34 (1), 151–161. https://doi.org/10.1111/j.1365-3113.2008.00445.x
  22. Perry, S.P., Chapman, T.W., Schwarz, M.P. & Crespi, B.J. (2004) Proclivity and effectiveness in gall defence by soldiers in five species of gall-inducing thrips: benefits of morphological caste dimorphism in two species (Kladothrips intermedius and K. habrus). Behavioral Ecology and Sociobiology, 56, 602–610. https://doi.org/10.1007/s00265-004-0811-8
  23. Priesner, H. (1925) Katalog der europäischen Thysanoptera. Konowia, 4, 141–159.
  24. Ross, A.J. (2024) Complete checklist of Burmese (Myanmar) amber taxa 2023. Mesozoic, 1 (1), 21–57. https://doi.org/10.11646/mesozoic.1.1.4
  25. Santhanakrishnan, A., Robinson, A.K., Jones, S., Low, A.A., Gadi, S., Hedrick, T.L. & Miller, L.A. (2014) Clap and fling mechanism with interacting porous wings in tiny insect flight. Journal of Experimental Biology, 217 (21), 3898–3909. https://doi.org/10.1242/jeb.084897
  26. Sato, K., Takahashi, H., Nguyen, M.-D., Matsumoto, K. & Shimoyama, I. (2013) Effectiveness of bristled wing of thrips. In: 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). Taipei, pp. 21–24. https://doi.org/10.1109/MEMSYS.2013.6474166
  27. Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  28. Stephens, J.F. (1829) A systematic catalogue of British insects: being an attempt to arrange all the hitherto discovered indigenous insects in accordance with their natural affinities, containing also the references to every English writer on entomology, and to the principal foreign authors, with all the published British genera to the present time. Baldwin and Cradock, London, xxxiv + 388 pp.
  29. ThripsWiki (2025) ThripsWiki—providing information on the world’s thrips. Available from: http://thrips.info/wiki/Main_Page (Accessed 2 April 2025).
  30. Tong, T.T., Shih, C.K. & Ren, D. (2019) A new genus and species of Stenurothripidae (Insecta: Thysanoptera: Terebrantia) from mid-Cretaceous Myanmar amber. Cretaceous Research, 100, 184–191. https://doi.org/10.1016/j.cretres.2019.03.005
  31. Ulitzka, M.R. (2015) Two new species of Aeolothripidae from Baltic Tertiary amber (Insecta: Thysanoptera). Palaeodiversity, 8, 89–94. https://doi.org/10.13140/RG.2.1.3043.2087
  32. Ulitzka, M.R. (2018) A first survey of Cretaceous thrips from Burmese amber including the establishment of a new family of Tubulifera (Insecta: Thysanoptera). Zootaxa, 4486 (4), 548–558. https://doi.org/10.11646/zootaxa.4486.4.8
  33. Ulitzka, M.R. (2019) Five new species of Rohrthrips (Thysanoptera: Rohrthripidae) from Burmese amber, and the evolution of Tubulifera wings. Zootaxa, 4585 (1), 27–40. https://doi.org/10.11646/zootaxa.4585.1.2
  34. Ulitzka, M.R. (2022) New genera and species of Rohrthripidae (Thysanoptera: Tubulifera) from Burmese Cretaceous amber. Zootaxa, 5162 (1), 1–36. https://doi.org/10.11646/zootaxa.5162.1.1
  35. Wang, Z.H., Mound, L.A., Hussain, M., Arthurs, S.P. & Mao, R.Q. (2022) Thysanoptera as predators: their diversity and significance as biological control agents. Pest Management Science, 78 (12), 5057–5070. https://doi.org/10.1002/ps.7176
  36. Wu, C.Y. & Zhang, H.R. (2023) Extant thrips diverged in the early Tertiary period. BMC Genomic Data, 24 (1), 46. https://doi.org/10.1186/s12863-023-01146-1
  37. Zhang, Y.J., Labandeira, C.C., Yu, J.M., Shih, C.K., Ren, D. & Gao, T.P. (2025) Evolution and mandibular sexual dimorphism in mid‐Cretaceous scorpionflies (Insecta: Mecoptera: Meropeidae). Journal of Systematics and Evolution, 63 (2), 359–368. https://doi.org/10.1111/jse.13121