Abstract
The endemic southern South American genus Agathemera Stål, which contains eight species, is analyzed in a cladistic context in order to establish a hypothesis regarding the phylogenetic relationships among its species. The cladistic analysis is based on adult and immature morphological characters belonging to both sexes. A biogeographical analysis is also performed to reconstruct the biogeographic history of the genus, and an environmental niche analysis to determine the potential distribution of the species, estimate niche overlap among species, and to find the most important variables that explain its present distribution. One tree of 51 steps was obtained that supports the monophyly of the genus. The species A. elegans and A. mesoauriculae distributed in southern Chile are situated at the base of the cladogram and they are the sister group to both the Argentinian (A. claraziana, A. luteola, A. maculafulgens and A. millepunctata) and the Chilean species (A. grylloidea and A. crassa). The Biogeographic analysis using DIVA 1.1 found 1 optimal reconstruction that involves a vicariant event at each node. The vicariant event of the most apical node of the tree can be correlated to the uplifting of the Andes. The basal species are distributed in the southern regions of Chile and in the Patagonian Steppe, while the remaining species are distributed in northern highlands. Environmental Niche Models showed that the soil variable was important for all eight species. According to the models, A. claraziana and A. millepunctata have large potential geographic distribution covering almost all the Patagonian area, and have similar niche requirements, while the six remaining species showed a more restricted geographic distribution.References
Cabrera, A.L. &. Willink, A. (1980) Biogeografía de América Latina. Serie de Biología, Monografía N° 13, O.E.A. 2ª edición corregida. 122 pp.
Camousseight, A. (1995) Revisión taxonómica del género Agathemera (Phasmatodea: Pseudophasmatidae) en Chile. Revista Chilena de Entomología, 22, 35–53.
Camousseight, A. (2005) Redefinición del género Agathemera Stål, 1875 (Phasmatodea, Pseudophasmatidae). Revista Chilena de Entomología, 31, 13–20.
Bradler, S. (2000) On the systematic position of Agathemera Stål 1875 within the Phasmatodea (Insecta). Zoology Analysis of Complex Systems 103, Suppl. III (Abstract 93.1), 99.
Bradler, S., Whiting, M.F &, Klug, R. (2003) Basal diversification and the evolution of wings within stick insects (Phasmatodea). Proceedings of first Dresden meeting on insect phylogeny. Entomologische Abhandlungen (Dresden), 61, 132–133.
Eisner, T., Morgan, R.C., Attygalle, A.B., Smedley, S.R., Herath, K.B., & Meinwald, J. (1997) Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). Journal of Experimental Biology, 200, 2493–2500.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC.M., Townsend Peterson, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.
Goloboff, P., Farris, J. & Nixon, K. (2003) TNT: Tree analysis using New Technology. Program and documentation, available from the authors, and at www.zmuc.dk/public/phylogeny.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Klug, R. & Bradler, S. (2006) The pregenital abdominal musculature in phasmids and its implications for the basal phylogeny of Phasmatodea (Insecta: Polynoptera). Organisms, Diversity & Evolution, 6, 171–184
Morrone, J.J. (2001) Biogeografía de America Latina y el Caribe. Manuales & Tesis Sociedad Entomológica Aragonesa, Vol. 3, Zaragoza. Spain, 148 pp.
Morrone, J.J. (2004) Panbiogeogrfía, componentes bióticos y zonas de transición, Revista Brasileira de Entomologia, 48, 149–162.
Noonan, G.R. (1990) Biogeographical patterns of North American Harpalus Latreille (Insects: Coleoptera Carabidae). Journal of Biogeography, 17, 583–614.
Noonan, G.R. (1992) Biogeographic patterns of the montane Carabidae of North America north of Mexico (Coleoptera: Carabidae). In Noonan, G.R., Ball, G.E., & Stork N.E. (Eds). The biogeography of ground beetles of mountains and islands. Athenaeum Press, Newcastle upon Tyne, U.K, pp. 1–42
Ortiz-Jaureguizar, E. & Cladera, G.A. (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66(3), 498–532.
Phillips, S.J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.
Roig Juñent, S.A & Flores, G.E. (2001) Historia biogeográfica de las áreas áridas de América del Sur austral. In: Llorente Bousquets, J. & Morrone, JJ (Eds.), Introducción a la biogeografía en Latinoamérica: Teorías, conceptos, métodos y aplicaciones. Las Prensas de Ciencias, Facultad de Ciencias, UNAM, México, D.F, pp. 257-266.
Roig Juñent, S.A., Flores, G.E., Claver, S., Debandi, G., & Marvaldi, A. (2001) Monte Desert (Argentina): insect biodiversity and natural areas. Journal of arid enviroments, 47, 77–94.
Roig-Juñent, S., Domínguez, M.C., Flores, G.E., & Mattoni, C. (2006) Biogeographic history of southamerican arid lands: a view from its arthropods. Journal of arid enviroments, 66, 404–420.
Roig-Juñent, S.A., Agrain, F., Carrara, R., Ruiz Manzanos, E. & Tognelli, M.F. (2008) Description and phylogenetic relationships of two new species of Baripus (Coleoptera: Carabidae: Broscini) and considerations regarding patterns of speciation. Annals of the Carnegie Museum, 77, 211–227.
Ronquist F. (1996) DIVA v. 1.1. Computer program for MasOS and WIn32. Available from (http://morphbank.ebc.uu.se/DIVA).
Ronquist F. (1997) Dispersal-Vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203.
Strong, E.E. & Lipscomb, D. (1999) Character coding and inaplicable data. Cladistics, 15, 363–371.
Tilgner, E.H., Kiselyova, T.G. & McHugh, J.V. (1999) A morphological study of Timema cristinae Vickery with the implications for the phylogenetics of Phasmida. Deutsche Entomologische Zeitschrift, 46(2), 149–162.
Tilgner, E.H. 2002. Systematics of Phasmida. Doctoral Thesis, University of Georgia, USA.
Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
Whiting, M.F., Bradler, S. & Maxwell, T. (2003) Loss and recovery of wings in stick insects. Nature, 421, 264–267.
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.
Zompro, O. (2004) Revision of the genera of the Areolatae including the status of Timema and Agathemera (Insecta, Phasmatodea). Abhandlungen des Naturwissenschaftigen Vereins in Hamburg (NF), 37, 1–327.
Zompro, O. (2005) A key to the genera of the Phasmatodea: Areolatae (Insecta). Phasmid Studies, 12, 11–24.