Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-02-22
Page range: 19–35
Abstract views: 655
PDF downloaded: 7

Prediction of the distribution limits of Rhinomias forticornis (Boheman, 1842) (Coleoptera: Curculionidae: Entiminae) based on Remote Sensing

Lviv Branch of Ukrainian Entomological Society, 18 Str. Teatralna, 79008, Lviv, Ukraine
Uzhanskyi National Park, 27 Str. Shevchenko, 89000, Velykyi Bereznyi, Ukraine
University of Oslo Natural History Museum, Department of Zoology, P.O. Box 1172 Blindern NO-0318 Oslo, Norway
biotic interaction biotic predictor realized niche species distribution modeling Last Glacial Maximum refugia new record Alps Apennines Bohemian Massif Carpathians Sudetes Vosges Podolian Upland Rhinomias

Abstract

Morphometry and diagnosis of Rhinomias forticornis (Boheman, 1842) are given. Distribution of Rhinomias forticornis is analyzed using known occurrences, original ecological data, correlative species distribution modeling with aspect on Last Glacial Maximum environment are given. To achieve a more realistic and precise spatial pattern, selected climatic variables are combined with remote sensing vegetation indices (LAI and NDVI). Presumable geographic limits of realized niche are Rhine River and Elbe River on the northwest, Dniester River on the northeast. The southeastern barrier in the Carpathians is possibly Tisza River. Since the natural climatic barrier in Asia Minor, it is definitely absent in the Caucasus despite the existence of suitable bioclimatic conditions. This is the first confirmation of Rh. forticornis in Ukraine. 

References

  1. AppEEARS Team. (2021) Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Ver. 2.63. NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, USA. Available from: https://lpdaacsvc.cr.usgs.gov/appeears (Accessed 26 Aug. 2021).
  2. Beránek, J. (2008) The response of weevil communities (Coleoptera: Curculionoidea) to the altitudinal zones of beech stands. Journal of Forest Science 54(6): 262–272. https://doi.org/10.17221/25/2008-JFS
  3. Birks, H. J. B. & Willis, K. J. (2008) Alpines, trees, and refugia in Europe. Plant Ecology & Diversity 1(2): 147–160. https://doi.org/10.1080/17550870802349146
  4. Bhagwat, S. & Willis, K. J. (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography 35: 464–482. https://doi.org/10.1111/j.1365-2699.2007.01861.x
  5. Burakowski, B., Mroczkowski, M. & Stefanska, J. (1993) Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, cześć 1. Katalog Fauny Polski, XXIII, 19, Warszawa, 1–304.
  6. Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. (2019) Chorological data for the main European woody species. Mendeley Data, V9 https://doi.org/10.17632/hr5h2hcgg4.9
  7. Didan, K. (2015) MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13A1.006
  8. Dieckmann, L. (1980) Beiträge zur Insektenfauna der DDR: Coleoptera – Curculionidae (Brachycerinae, Otiorhynchinae, Brachyderinae). Beiträge zur Entomologie 30(1): 145–310.
  9. Duelli, P., Obrist, M. B. K. & Schmatz, D. R. (1999) Biodiversity evaluation in agricultural landscapes: Above-ground insects. Agriculture Ecosystems & Environment 74(1): 33–64. https://doi.org/10.1016/S0167-8809(99)00029-8
  10. Flechtner, G. (2000) 3.10 Coleoptera (Käfer). pp. 19–349. In: Flechtner G. Dorow W.H.O, Kopelke J.-P. (2000). Naturwaldreservate in Hessen. Niddahange ostlich Rudingshain. Zoologische Untersuchungen II. 1990–1992. Mitteilungen der Hessischen Landesforstverwaltung, Band 32: 550 pp.
  11. Fournier, A., Barbet-Massin, M., Rome, Q. & Courchamp, F. (2017) Predicting species distribution combining multi-scale drivers. Global Ecology and Conservation 12: 215–226. https://doi.org/10.1016/j.gecco.2017.11.002
  12. GBIF.org. (2021a) GBIF Occurrence Download. Fagus sylvatica. (Accessed 12 July 2021) https://doi.org/10.15468/dl.jqa227
  13. GBIF.org. (2021b) GBIF Occurrence Download. Rhinomias. (Accessed 3 Dec. 2021) https://doi.org/10.15468/dl.sgcua3
  14. Germann, Ch. (2010) Die Rüsselkäfer (Coleoptera, Curculionoidea) der Schweiz – Checkliste mit Verbreitungsangaben nach biogeografischen Regionen. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 83: 41–118.
  15. Germann, Ch. (2011) Supplement zur Checkliste der Rüsselkäfer der Schweiz (Coleoptera, Curculionoidea). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 84: 155–169.
  16. Gourov, A. V. & Tagliapietra, V. (1997) Uncommon cases of damage to young coniferous trees by several Curculionoidea species, and possible ecological reasons. pp. 228–243. In: Gregoire J.C., Liebhold A.M., Stephen F.M., Day K.R., Salom S.M. (eds), Proceedings International Union of Forestry Research Organizations Conference “Integrating cultural tactics into the management of bark beetle and reforestation pests”. Vallombrosa (Italy), September 1–3, 1996. Gen. Tech. Rep. NE-236. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1997. 254 pp.
  17. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276
  18. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. (2011) Package ‘dismo’. Available from: https://cran.r-project.org/web/packages/dismo/index.html
  19. Hildt, L. F. (1893) Przyczynek do fauny chrząszczów podolskich. Pamiętnik fizyograficzny 12 [1892]: 209–235.
  20. Hoffmann, A. (1950) Coléoptères Curculionides, 1. Faune de France. 52. Librairie de la Faculte des Sciences, Paris, 486 pp.
  21. Holecová, M., Petryszak, B., Skalski, T. & Paśnik, G. (1997) Curculionidae (Coleoptera) Sedlickej Kotliny (Bukovské Vrchy, Východné Karpaty). Folia Faunistica Slovaca 2: 75–84.
  22. Houston Durrant, T., de Rigo, D. & Caudullo, G. (2016) Fagus sylvatica and other beeches in Europe: distribution, habitat, usage and threats. In: European Atlas of Forest Tree Species. (San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A., editors) Publishing Office of European Union, Luxembourg, pp. E012b90+
  23. Jurgiel, B. (2020) Point sampling tool. QGIS Python Plugin. Version: [223] Point sampling tool 0.5.3
  24. Knutelski, S. (2005) Różnorodność, ekologia i chorologia ryjkowców rezerwatu biosfery “Tatry” (Coleoptera: Curculionoidea). Monografie Faunistyczne 23: 1–206.
  25. Knutelski, S. & Skalski, T. (1993) Fauna ryjkowców (Coleoptera: Curculionoidea) polskiej części Magury Spiskiej. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Zoologiczne 38: 181–208.
  26. Knutelski, S. & Witkowski, Z. (1995) Ryjkowce (Coleoptera: Curculionoidea) obszaru przyszłych zbiorników wodnych Czorsztyn-Niedzica i Sromowce Wyżne. Pieniny – Przyroda i Człowiek 4: 59–76.
  27. Koch, K. (1968) Käferfauna der Rheinprovinz. Decheniana-Beihefte 13: 1–382.
  28. Kubisz, D., Mazur, M. & Pawłowski, J. (1998) Chrząszcze Miodoborów (Zachodnia Ukraina). Część II. Actualni stan poznania (Insecta: Coleoptera). Studia ośrodka Dokumentacji Fizjograficznej 25: 217–294.
  29. Kunz, R. (1994) Ökologisch-faunistische Studien über die Curculionidenfauna des Vogelsberges. Das Künanzhaus Suppl. 4: 179 pp.
  30. Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B. J., Schaubert, V., Viehweger, J. & Hambach, U. (2021) Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews 215. https://doi.org/10.1016/j.earscirev.2020.103496
  31. Mazur, A., Klejdysz, T., Dobrowolski, M., Konwerski, S., Krolik, R., Labedzki, A., Mazur, M. M. & Przewozny, M. (2016) Chrząszcze saproksyliczne Karkonoszy. Część I - wykaz gatunków. Acta Scientiarum Polonorum. Silvarum Colendarum Ratio et Industria Lignaria 15(4): 269–295. https://doi.org/10.17306/J.AFW.2016.4.29
  32. Merkl, O. (2008) Data to the knowledge on the beetle fauna of Maramureş, Romania (Coleoptera). Studia Universitatis “Vasile Goldis”, Seria Stiintele Vietii (Life Sciences Series) 18. Suppl: 243–311.
  33. Mertlik, J. (2007) Brouci (Coleoptera) prirodni rezervace Buky u Vysokeho Chvojna (Ceska Republika). Elateridarium 1: 97–152.
  34. Mitka, J., Bąba, W. & Szczepanek, K. (2014) Putative forest glacial refugia in the Western and Eastern Carpathians. Modern Phytomorphology 5: 85–92.
  35. Myneni, R., Knyazikhin, Y. & Park, T. (2015) MYD15A2H MODIS/Aqua Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD15A2H.006
  36. Naimi, B. & Araujo, M. B. (2016) Package ‘sdm’. Available from: https://cran.r-project.org/web/packages/sdm/index.html
  37. Passauro, E. (1934) Une nouvelle espèce de Rhinomias. Bulletin et Annales de la Société Entomologique de Belgique 74: 387.
  38. Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  39. Peterson, T. A., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M. & Araújo, M. B. (2011) Ecological Niches and Geographic Distributions. Princeton University Press, Princeton & Oxford, 328 pp. https://doi.org/10.23943/princeton/9780691136868.003.0003
  40. Pešić, S. (2003) Balkan weevils (Curculionoidea) in The Natural History Museum. Kragujevac Journal of Sciences 25: 139–162.
  41. Pinto-Ledezma, J. N. & Cavender-Bares, J. (2020) Using Remote Sensing for Modeling and Monitoring Species Distributions, pp. 199–223. In: Remote Sensing of Plant Biodiversity (Cavender-Bares J., Gamon J.A., Townsend P.A., editors). Springer, Cham, 581 pp. https://doi.org/10.1007/978-3-030-33157-3_9
  42. Preuss, G. & Padial, A. A. (2021) Increasing reality of species distribution models of consumers by including its food resources. Neotropical Biology and Conservation 16(3): 411–425. https://doi.org/10.3897/neotropical.16.e64892
  43. Ray, N. & Adams, J. M. (2001) A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeology 11. https://doi.org/10.11141/ia.11.2
  44. QGIS Team. Georeferencer GDAL Plugin https://docs.qgis.org/2.8/en/docs/user_manual/plugins/plugins_georeferencer.html
  45. Schott, L. (1999) Catalogue et Atlas des Coléoptères d’alsace. Tome 10. Société Alsacienne d’Entomologie. Musée Zoologique de l’Université et de la Ville de Strasbourg, Strasbourg, 145 pp.
  46. Seriani, M. (1987) Idee per lo studio dell’entomofauna dei boschi planiziali friulani ed osservazioni su alcune specie di Coleotteri raccolte nella lettiera. Biogeographia 8: 699–712.
  47. Stierlin, G. (1898) Fauna Coleopterorum Helvetica. Teil II. Schaffhausen: Bolli und Boecherer, 662 pp.
  48. Suikat, R. (2015) Käfer in Schleswig-Holsteins Laubwäldern. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg 68: 215–242.
  49. Ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F. & Monteagudo, A. (2013) Hyperdominance in the Amazonian tree flora. Science, 342(6156), p.1243092. https://doi.org/10.1126/science.1243092
  50. Topographic Maps. [Sheets M-34, M-35, L-34 and L-35]. Available from: http://topmap.su/indexn.html (Accessed 01 Jul. 2021)
  51. Ukrainian Forest Management. [Forestry maps]. Available from: https://www.lisproekt.gov.ua/plani-lisonasadzhen1?fbclid=IwAR0ITpCKPurWU2ylQ1kYrkArI3gnlB06iiepqeEdPud1X4Ptmrjbh87w9iE (Accessed 01 Jul. 2021)
  52. Upton, M. S. & Mantle, B. L. (2010) Methods for Collecting, Preserving and Studying Insects and Other Terrestrial Arthropods. Australian Entomological Society. Miscellaneous Publication no. 3, Canberra, 81 pp.
  53. Urban, S., Vonička, P., Černý, Z., Gürtler, N., Kohn, J., Moravec, P., Nežerka, J., Plecháč, J., Průša, M., Ryšavý, J., Schneider, J., Schön, K., Strejček, J., Škoda, R., Špryňar, P., Trmal, A., Vosecký, J. & Vrabec, V. (2006) Výsledky Entomologických dnů 2005 – brouci (Coleoptera): Příspěvek k poznání fauny Brd a Středního Povltaví. (Results of Entomological Days 2005 – beetles (Coleoptera): Contribution to the knowledge of the fauna of the Brdy hills and the Střední Povltaví region. Klapalekiana 42: 353–385.
  54. Wenzel, A., Stürtz, M. & Weigel, A. (2017) Die Käferfauna (Insecta: Coleoptera) der Naturwaldparzelle “Vessertal” und zweier bewirtschafteter Vergleichsflächen bei Vesser (Thüringen). Mitteilungen-ThüringenForst 35: 1–120.
  55. Willmes, C. (2014) Köppen-Geiger classification of MPI-ESM-P LGM simulation. CRC806-Database. https://doi.org/10.5880/SFB806.2
  56. Yunakov, N. N. & Nadein, K. S. (2006) New taxa of geophilic Entiminae (Coleoptera: Curculionidae) from the Balkan Peninsula, Caucasus, and Central Asia. Entomologische Abhandlungen 63: 77–98.
  57. Zając, K. S., Proćków, M., Zając, K., Stec, D. & Lachowska-Cierlik, D. (2020) Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution 20: 747–762. https://doi.org/10.1007/s13127-020-00464-x
  58. Zickel, M., Becker, D., Verheul, J., Yener, Y. & Willmes, C. (2016) Paleocoastlines GIS dataset. CRC806-Database. https://doi.org/10.5880/SFB806.20