Abstract
Insects are the major contributor of Earth’s biodiversity, as the most diverse group in the modern biosphere. Considerable debates on the timing of entomofauna modernization remain, but most recent studies indicate it could have happened during the Triassic, following the “Great Dying” across the Permian–Triassic boundary. Using global insect diversity data and fossil records of select representative faunas, we performed computational analysis and comparative research to explore the compositional dynamics of entomofauna in the Permian and Triassic. Our analysis shows that: 1) following the Permian–Triassic mass extinction, insect diversity rapidly increased in the Anisian Stage of the Middle Triassic; 2) modern-dominating orders, such as Coleoptera, Diptera, Hymenoptera, Hemiptera, and Orthoptera exceeded half of the total diversity in the Ladinian; 3) In the Carnian of the Late Triassic, Coleoptera had emerged to be the dominating group of the entomofauna. These findings indicate that the rise of modern-typed entomofauna can be traced back to the Ladinian–Carnian (late Middle Triassic–early Late Triassic), much earlier than the Cretaceous Terrestrial Revolution.
References
Anderson J. M., Anderson H. M. & Cruickshank A. R. I. 1998. Late Triassic ecosystems of the Molteno/Lower Elliot biome of southern Africa. Palaeontology 41: 387–421.
Aristov D. S., Bashkuev A. S., Golubev V. K., Gorochov A. V., Karasev E. V., Kopylov D. S., Ponomarenko A. G., Rasnitsyn A. P., Rasnitsyn D. A., Sinitshenkova N. D., Sukatsheva I. D. & Vassilenko D. V. 2013. Fossil insects of the middle and upper Permian of European Russia. Paleontological Journal 47: 641‒832. https://doi.org/10.1134/S0031030113070010
Asar Y. Ho S. Y. & Sauquet H. 2022. Early diversifications of angiosperms and their insect pollinators: were they unlinked?. Trends in Plant Science 27(9): 858‒869. https://doi.org/10.1016/j.tplants.2022.04.004
Bambach R. K., Knoll A. H. & Sepkoski Jr J. J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences 99(10): 6854‒6859.
Bashkuev A., Sell J., Aristov D., Ponomarenko A., Sinitshenkova N. & Mahler H. 2012. Insects from the Buntsandstein of lower Franconia and Thuringia. Paläontologische Zeitschrift 86: 175‒185. https://doi.org/10.1007/s12542-011-0119-8
Benton M. J. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1558): 3667‒3679.
Benton M. J. 2016. The Triassic. Current Biology 26(23): R1214‒R1218. https://doi.org/10.1016/j.cub.2016.10.060
Benton M. J. & Newell A. J. 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research 25(4): 1308‒1337. https://doi.org/10.1016/j.gr.2012.12.010
Benton M. J., Wilf P. & Sauquet H. 2022. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist 233(5): 2017‒2035. https://doi.org/10.1111/nph.17822
Benton M. J. & Wu F. X. 2022. Triassic revolution. Frontiers in earth Science 10: 899541.
Brayard A., Krumenacker L. J., Botting J. P., Jenks J. F., Bylund K. G., Fara E., Vennin E., Olivier N., Goudemand N., Saucède T., Charbonnier S., Romano C., Doguzhaeva L., Thuy B., Hautmann M., Stephen D. A., Thomazo C. & Escarguel G. 2017. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances 3(2): e1602159. https://doi.org/10.1126/sciadv.160215
Cai C. Y., Tihelka E., Giacomelli M., Lawrence J. F., Ślipiński A., Kundrata R., Yamamoto S., Thayer M. K., Newton A. F., Leschen R. A. B., Gimmel M. L., Lü L., Engel M. S., Bouchard P., Huang D. Y., Pisani D. & Donoghue P. C. J. 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9(3): 211771. https://doi.org/10.1098/rsos.211771
Clapham M. E., Karr J. A., Nicholson D. B., Ross A. J. & Mayhew P. J. 2016. Ancient origin of high taxonomic richness among insects. Proceedings of the Royal Society B: Biological Sciences 283(1824): 20152476. https://doi.org/10.1098/rspb.2015.2476
Cleal C. J. & Cascales-Miñana B. 2014. Composition and dynamics of the great Phanerozoic Evolutionary Floras. Lethaia 47(4): 469‒484. https://doi.org/10.1111/let.12070
Dai X., Davies J. H. F. L., Yuan Z. W., Brayard A., Ovtcharova M., Xu G. H., Liu X. K., Smith C. P. A., Schweitzer C. E., Li M.T., Perrot M. G., Jiang S. Y., Miao L. Y., Cao Y. R., Yan J., Bai R. Y., Wang F. Y., Guo W., Song H. Y., Tian L., Dal Corso J., Liu Y. T., Chu D. L. & Song H. J. 2023. A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem. Science 379(6632): 567‒572. https://doi.org/10.1126/science.adf1622
Dal Corso1 J., Bernardi M., Sun Y. D., Song H. J., Seyfullah L. J., Preto N., Gianolla P., Ruffell A., Kustatscher E., Roghi G., Merico A., Hohn S., Schmidt A. R., Marzoli A., Newton R. J., Wignall P. B. & Benton M. J. 2020. Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances 6(38), eaba0099. https://doi.org/10.1126/sciadv.aba0099
DiMichele W. A., Kerp H., Tabor N. J. & Looy C. V. 2008. The so-called “Paleophytic–Mesophytic” transition in equatorial Pangea—Multiple biomes and vegetational tracking of climate change through geological time. Palaeogeography, Palaeoclimatology, Palaeoecology 268(3‒4): 152‒163. https://doi.org/10.1016/j.palaeo.2008.06.006
Eggleton P. 2020. The state of the world's insects. Annual Review of Environment and Resources 45(1): 61‒82. https://doi.org/10.1146/annurev-environ-012420-050035
Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O. & Taylor F. J. R. 2013. The evolution of modern eukaryotic phytoplankton. science 305(5682): 354‒360. https://doi.org/10.1126/science.1095964
Gall J. C. & Grauvogel-Stamm L. 2005. The early Middle Triassic ‘Grès à Voltzia’Formation of eastern France: a model of environmental refugium. Comptes Rendus Palevol 4(6‒7): 637‒652. https://doi.org/10.1016/j.crpv.2005.04.007
Grimaldi D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 8(2): 373‒406. https://doi.org/10.2307/2666181
Grimaldi D. & Engel M. S. 2005. Evolution of the Insects. Cambridge University Press, Cambridge, 755 pp.
Gui S. M., Liu Y. C. & Tian L. 2023. Evolution of insect diversity in the Permian and Triassic. Palaeoentomology 6(5): 472‒481. https://doi.org/10.11646/palaeoentomology.6.5.6
Jell P. A. 2004. The fossil insects of Australia. Memoirs of the Queensland Museum 50(1): 1‒124.
Jouault C., Nel A., Perrichot V., Legendre F. & Condamine F. L. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nature Communications 13(1): 7512. https://doi.org/10.6084/m9.figshare.c.6296196.v2
Jouault C., Nel A., Perrichot V., Legendre F. & Condamine F. L. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nature Communications 13(1): 7512. https://doi.org/10.1038/s41467-022-35284-4
Labandeira C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28(1): 153‒193. https://doi.org/10.1146/annurev.ecolsys.28.1.153
Labandeira C. C. 2001. The rise and diversification of insects, pp. 82‒88. In: Palaeobiology. Vol. 2 (D. E. G. Briggs and P. R Crowther, editors). Blackwell Publishing, London, 583 pp.
Labandeira C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist 51(1): 14‒29. https://doi.org/10.1093/ae/51.1.14
Labandeira C. C., Kustatscher E. & Wappler T. 2016. Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLoS One 11(11), e0165205. https://doi.org/10.1371/journal.pone.0165205
Labandeira C. C. & Sepkoski Jr J. J. 1993. Insect diversity in the fossil record. Science 261(5119): 310‒315. https://doi.org/10.1126/science.11536548
Labandeira C. C. 2006. Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny 64: 53‒94.
Labandeira C. C. 2013. A paleobiologic perspective on plant–insect interactions. Current Opinion in Plant Biology 16(4): 414‒421. https://doi.org/10.1016/j.pbi.2013.06.003
Lehtonen S., Silvestro D., Karger D. N., Scotese C., Tuomisto H., Kessler M., Peña C., Wahlberg N. & Antonelli A. 2017. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports 7(1): 4831. https://doi.org/10.1038/s41598-017-05263-7
Liu H. Y., Wei H. B., Chen J., Guo Y., Zhou Y., Gou X. D., Yang S. L. & Feng Z. 2020. A latitudinal gradient of plant–insect interactions during the late Permian in terrestrial ecosystems? New evidence from Southwest China. Global and Planetary Change 192: 103248. https://doi.org/10.1016/j.gloplacha.2020.103248
Lukashevich E. D. 2021. The oldest Diptera (Insecta) from the Upper Buntsandstein (early Middle Triassic) of Europe. Zootaxa 5067(1): 135‒143. https://doi.org/10.11646/zootaxa.5067.1.10
Lü L., Cai C. Y., Zhang X., Newton A. F., Thayer M. K. & Zhou H. Z. 2020. Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions. Current Zoology 66: 435–444.
McKenna D. D., Sequeira A. S., Marvaldi A. E. & Farrell B. D. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences 106(17): 7083‒7088.
Misof B., Liu S., Meusemann K., Peters R. S., Donath A., Mayer C., Frandsen P. B., Ware J., Flouri T., Beutel R. G., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust J., Aberer A. J., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A. et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210): 763‒767. https://doi.org/10.1126/science.1257570
Nel A. 2015. Some misconceptions or preconceived ideas on the history of the Insects. BIO Web of Conferences 4: 00006. https://doi.org/10.1051/bioconf/20150400006
Nel P., Bertrand S. & Nel A. 2018. Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Scientific Reports 8(1): 3516. https://doi.org/10.1038/s41598-018-21938-1
Papier F., Nel A., Grauvogel-Stamm L. & Gall J. C. 2005. La diversité des Coleoptera (Insecta) du Trias dans le nord-est de la France. Geodiversitas 27(2): 181‒199.
Peris D. & Condamine F. L. 2024. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nature Communications 15(1): 552. https://doi.org/10.6084/m9.figshare.24076725
Pinheiro E. R., Iannuzzi R. & Duarte L. D. 2016. Insect herbivory fluctuations through geological time. Ecology 97(9): 2501–2510. https://doi.org/10.1002/ecy.1476
Rasnitsyn A. P., Aristov D. S. & Rasnitsyn D. A. 2015. Dynamics of insect diversity during the Early and Middle Permian. Paleontological Journal 49: 1282‒1309. https://doi.org/10.1134/S0031030115120102
Rix A. 2021. The Triassic insects of Denmark Hill, Ipswich, Southeast Queensland: the creation, use and dispersal of a collection. Memoirs of the Queensland Museum–Nature 62: 217‒242. https://doi.org/10.17082/j.2204-1478.62.2021.2020-11
Roscher M., Stordal F. & Svensen H. 2011. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3‒4): 186‒200. https://doi.org/10.1016/j.palaeo.2011.05.042
Schachat S. R. & Labandeira C. C. 2021. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Annals of the Entomological Society of America 114(2): 99‒118. https://doi.org/10.1093/aesa/saaa042
Scotese C. R., Song H., Mills B. J. & van der Meer D. G. 2021. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503.
Sepkoski J. J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10(2): 246‒267. https://doi.org/10.1017/S0094837300008186
Shcherbakov D. E. 2008a. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontological Journal 42(1): 15‒31. https://doi.org/10.1134/S0031030108010036
Shcherbakov D. E. 2008b. Madygen, Triassic Lagerstätte number one, before and after Sharov. Alavesia 2: 113‒124.
Song H. J. & Tong J. N. 2016. Mass extinction and Survival during the Permian–Triassic Crisis. Earth Science 41(06): 901‒918. (In Chinese).
Song H. J., Wignall P. B. & Dunhill A. M. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science advances 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat509
Sookias R. B., Butler R. J. & Benson R. B. 2012. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proceedings of the Royal Society B: Biological Sciences 279(1736): 2180‒2187. https://doi.org/10.1098/rspb.2011.2441
Stork N. E. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annual Review of Entomology 63(1): 31‒45. https://doi.org/10.1146/annurev-ento-020117-043348
Stork N. E., McBroom J., Gely C. & Hamilton A. J. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences 112(24): 7519‒7523. https://doi.org/10.1073/pnas.1502408112
van Eldijk T. J., Wappler T., Strother P. K., van der Weijst C. M., Rajaei H., Visscher H. & van de Schootbrugge B. 2018. A Triassic-Jurassic window into the evolution of Lepidoptera. Science advances 4(1): e1701568. https://doi.org/10.1126/sciadv.1701568
Vera E. I., Monferran M. D., Massaferro J., Sabater L. M., Gallego O. F., Perez Loinaze V. S., Moyano-Paz D., Agnolín F. L., Manabe M., Tsuhiji T. & Novas F. E. 2023. A Maastrichtian insect assemblage from Patagonia sheds light on arthropod diversity previous to the K/Pg event. Communications Biology 6(1): 1249. https://doi.org/10.1038/s42003-023-05596-2
Vermeij G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3(3): 245‒258. https://doi.org/10.1017/S0094837300005352
Vermeij G. J. & Grosberg R. K. 2010. The great divergence: when did diversity on land exceed that in the sea?. Integrative and Comparative Biology 50(4): 675‒682. https://doi.org/10.1093/icb/icq078
Wang B., Xu C. P. & Jarzembowski E. A. 2022. Ecological radiations of insects in the Mesozoic. Trends in Ecology & Evolution 37(6): 529‒540. https://doi.org/10.1016/j.tree.2022.02.007
Wappler T., Kustatscher E. & Dellantonio E. 2015. Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—Initial pattern and response to abiotic environmental perturbations. PeerJ 3: e921. https://doi.org/10.7717/peerj.921
Wappler T., Labandeira C. C., Rust J., Frankenhäuser H. & Wilde V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. PLoS ONE 7(7): e40744. https://doi.org/10.1371/journal.pone.0040744
Zhang Z. Q. 2011. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Magnolia press, New Zealand, 237 pp.
Zhao X. Y., Yu Y. L., Clapham M. E., Yan E., Chen J., Jarzembowski E. A., Zhao X. D. & Wang B. 2021. Early evolution of beetles regulated by the end-Permian deforestation. Elife 10: e72692. https://doi.org/10.7554/eLife.72692
Zheng D. R., Chang S. C. & Wang H. 2018. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Science advances 4(9): eaat1380. https://doi.org/10.1126/sciadv.aat1380
Zhu R. X., Hou Z. Q., Guo Z. T. & Wan B. 2021. Summary of “the past, present and future of the habitable Earth: development strategy of earth science”. Chinese Science Bulletin 66(35): 4485‒4490. (In Chinese).
Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early–early Middle Triassic of Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 371: 136‒144. https://doi.org/10.1016/j.palaeo.2013.01.002