Abstract
Understanding predator-prey dynamics is crucial for assessing the biological control potential of generalist arthropod predators. The green lacewing (Mallada basalis) is a common natural predator in horticulture but has not yet been evaluated for its effects on greenhouse thrips (Heliothrips haemorrhoidalis) across different prey life stages. This study examined the functional responses of first and second instar M. basalis larvae to three life stages of thrips (second instar nymphs, pupae, and adults) under six initial prey densities (1, 2, 6, 10, 14, and 18 prey per cell) within a 24 h interval. The predation rate varied significantly (p < 0.05) overall with the instar of green lacewings and the life stage of thrips. Between the same prey densities, prey handling time of second instar lacewing larvae consistently exceeded (by c. 50%) that of first instar larvae. The quantity of prey that predators consumed appeared to vary with prey size, prey defence capabilities, and prey age. All functional responses were of type II but it shape varied at different prey developmental stages. Lacewing predation on pupal and adult thrips remained at low levels across varying densities, suggesting limited lacewing predation efficiency on these developmental stages. Our results indicate that lacewing larvae, particularly second instars, are effective predators of immature thrips and may contribute to biological control strategies targeting these early developmental stages. The stage-specific predation patterns we identified provide empirical insights for optimising the integration of lacewings into management programmes for greenhouse thrips.
References
- Ananthakrishnan T. N. 1984. Bioecology of Thrips. Indira Publishing House, Michigan, 205 pp.
- Araújo R. G., Rodriguez-Jasso R. M., Ruiz H. A., Pintado M. M. E. & Aguilar C. N. 2018. Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80: 51–60. https://doi.org/10.1016/j.tifs.2018.07.027
- Ayala Silva T. & Ledesma N. 2014. Avocado History, Biodiversity and Production, pp 157–205. In: Sustainable Horticultural Systems Issues, Technology and Innovation (Dilip Nandwani) Cham, Springer International Publishing, 395 pp.
- Bene G. D., Cavallo V., Lupetti P. & Dallai R. 1998. Ultrastructure of the accessory gland in the parthenogenetic thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae). International Journal of Insect Morphology and Embryology 27(3): 255–261. https://doi.org/10.1016/S0020-7322(98)00018-X
- Bernardo U., Viggiani G. & Sasso R. 2005. Biological parameters of Thripobius semiluteus Bouček (Hym., Eulophidae), a larval endoparasitoid of Heliothrips haemorrhoidalis (Bouché) (Thysan., Thripidae). Journal of Applied Entomology 129(5): 250–57 https://doi.org/10.1111/j.1439-0418.2005.00957.x
- Bhuyan D. J., Alsherbiny M. A., Perera S., Low M., Basu A., Devi O. A., Barooah M. S., Li C. G. & Papoutsis K. 2019. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants 8(10): 426. https://doi.org/10.3390/antiox8100426
- Boo K. S., Chung I. B., Han K. S., Pickett J. A. & Wadhams L. J. 1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. Journal of Chemical Ecology 24(4): 631–643. https://doi.org/10.1023/A:1022386001722
- Cheng L. 2007. A laboratory behavioral assessment on predatory potential of the green lacewing Mallada basalis on papaya pest mites. Unpublished PhD thesis, Kansas State University, Kansas, USA.
- Cheng L. L., Nechols J. R., Margolies D. C., Campbell J. F. & Yang P. S. 2010. Assessment of prey preference by the mass-produced generalist predator Mallada basalis (Neuroptera: Chrysopidae) on papaya mites. Biological Control 53(3): 267–272. https://doi.org/10.1016/j.biocontrol.2010.02.006
- Chen C. C., Ling-Lan C., Yaw-Jen D., Chu-Tung L., Wen-Jer W. & Yaninek J. S. 2014. Using the green lacewing Mallada basalis to control Tetranychus kanzawai on papaya in a screenhouse. Taiwan Agricultural Research 63(2): 91. https://doi.org/10.6156/JTAR/2014.06302.01
- Dalir S., Hajiqanbar H., Fathipour Y. & Khanamani M. 2021. A comprehensive picture of foraging strategies of neoseiulus cucumeris and amblyseius swirskii on western Flower Thrips. Pest Management Science 77(12): 5418–29. https://doi.org/10.1002/ps.6581
- Dara S. K. 2019. The new integrated pest management paradigm for the modern age. Journal of Integrated Pest Management 10(1): 1. https://doi.org/10.1093/jipm/pmz010
- Dennill G. B. 1992. Orius thripoborus (Anthocoridae), a potential biocontrol agent of Heliothrips haemorrhoidalis and Selenothrips rubrocinctus (Thripidae) on avocado fruits in the eastern Transvaal. Journal of the Entomological Society of Southern Africa 55(2): 255–258. Available from: http://hdl.handle.net/10520/AJA00128789_3224 (accessed 24 December 2025)
- de Souza M. T., de Souza M. T. & Zawadneak M. A. C. 2022. Biology and life table parameters of Heliothrips haemorrhoidalis on strawberries. Phytoparasitica 50(1): 35–41. https://doi.org/10.1007/s12600-021-00943-7
- Dixon J. & Pak H. 2008. Avocado research by the New Zealand avocado industry. California Avocado Society Yearbook 91: 55–70.
- Dreher M. L. & Davenport A. J. 2013. Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition 53(7): 738–750. https://doi.org/10.1080/10408398.2011.556759
- Early J. W. 2020. Establishment of the green lacewing Mallada basalis in mainland New Zealand. Records of the Auckland Museum 54: 81–86. https://doi.org/10.32912/ram.2019.54.5
- Etienne J., Ryckewaert P. & Michel B. 2015. Thrips (Insecta: Thysanoptera) of Guadeloupe and Martinique: updated checklist with ecological information. Florida Entomologist 98(1): 298–304. https://doi.org/10.1653/024.098.0148
- Food and Agriculture Organization of the United Nations. 2025. Production: Crops and livestock. (https://www.fao.org/faostat/en/#home.1 October 2025.
- Froud K. J. & Stevens, P. S. 2002. Importation biological control of Heliothrips haemorrhoidalis by Thripobius semiluteus in New Zealand–a case study of non-target host and environmental risk assessment. In: Proceedings 1st International Symposium on Biological Control of Arthropods, January 14-18, 2002, Honolulu, Hawaii, pp.14–18.
- Holling C. S. 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91: 385–398.
- Huang K., Guan Z., Blare T. & Hammami A. M. 2023. Global avocado boom. Choices 38(4): 1–9.
- Karithi E. M. 2016. Evaluation of the efficacy of Coolbot™ cold storage technology to preserve quality and extend mango fruit shelf life. African Journal of Agricultural Research 8(21): 2385–2402.
- Kassim A., Workneh T. S. & Bezuidenhout C. N. 2013. A review on postharvest handling of avocado fruit. African Journal of Agricultural Research 8(21): 2385–2402.
- Kay M., Elkin L., Higgins J. & Wobbrock J. 2021. ARTool: aligned rank transform for nonparametric factorial ANOVAs. Available form: https://github.com/mjskay/ARTool (accessed 24 December 2025)
- Larral P., Ripa R., Funderburk J. & Lopez E. 2018. Population abundance, phenology and sampling plan for Heliothrips haemorrhoidalis on avocado. Florida Entomologist 101(2): 166–171. https://doi.org/10.1653/024.101.0203
- Li C., Yu J., Mao R., Kang K., Xu L. & Wu M. 2024. Functional and numerical responses of Harmonia axyridis (Coleoptera: Coccinellidae) to Rhopalosiphum nymphaeae (Hemiptera: Aphididae) and their potential for biological control. Insects 15 (9): 633 https://doi.org/10.3390/insects15090633
- Lima E. F. B., Lopes E. N. & Berti Filho E. 2012. Heliothrips haemorrhoidalis attacking Polypodium persicifolium in Brazil. Revista de Agricultura 87(2):119–121
- Logan D., Rowe C., McKenna C., Herrick J. & Rogers P. 2021. Phenology of greenhouse thrips on kiwifruit vines and alternative host plants. New Zealand Plant Protection 74: 55–61. https://doi.org/10.30843/nzpp.2021.74.11743
- Mound L. A. & Walker A. K. 1982. Terebrantia (Insecta: Thysanoptera). Fauna of New Zealand 1: 1–113.
- Nakahara S., O’Donnell C. A. & Mound L. A. 2015. Heliothrips haemorrhoidalis and its relatives, with one new species and one new genus. Zootaxa 4021(4): 578–584. https://doi.org/10.11646/zootaxa.4021.4.7
- New Zealand Avocado. 2023. Industry structure. [Website] Available from: https://industry.nzavocado.co.nz/about-us/governance/industry-structure/ (accessed 1 October 2025)
- Papanikolaou N. E., Kypraios T., Moffat H., Fantinou A., Perdikis D. P. & Drovandi C. 2021. Predators’ functional response: statistical inference and biological interpretation of handling time. Frontiers in Ecology and Evolution 9: 740848. https://doi.org/10.3389/fevo.2021.740848
- Pritchard D. W., Paterson R. A., Bovy H. C., Barrios-O’Neill D. & Poisot T. 2017. frair: An R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution 8(11): 1528–1534. https://doi.org/10.1111/2041-210X.12784
- R Core Team 2022. R: a language and environment for statistical computing. Version 4.1.2. Vienna, R Foundation for Statistical Computing. Available from: https://www.R-project.org/ (Accessed 1 May 2025)
- Sazo L., Soto N. & Araya J. E. 2006. Predation capacity of Neoseiulus californicus on larvae of Frankliniella occidentalis and Heliothrips haemorrhoidalis. Boletín Sociedad Entomológica Aragonesa 39: 447–450.
- Scott Brown A. S. & Simmonds M. S. J. 2006. Leaf morphology of hosts and nonhosts of the thrips Heliothrips haemorrhoidalis. Botanical Journal of the Linnean Society 152(1): 109–130. https://doi.org/10.1111/j.1095-8339.2006.00560.x
- Tang L., Yan K., Fu B., Wu J., Liu K. & Lu Y. 2015. Life table parameters of Megalurothrips usitatus on four leguminous crops. Florida Entomologist 98(2): 620–625. https://doi.org/10.1653/024.098.0235
- Wang J., Zhang K., Li L. & Zhang Z. 2024. Development and reproduction of four predatory mites feeding on spider mites. Systematic and Applied Acarology 29(2): 269–284. https://doi.org/10.11158/saa.29.2.7
- Ye J., Dai J., Li J., Li Z., Lu Y., Han, S. & Zeng L. 2015. Development and reproduction of Mallada basalis on artificial diets. Florida Entomologist 98(4): 1072–1076. https://doi.org/10.1653/024.098.0410
- Ye J., Li J., Li Z. & Han S. 2017. Rearing of Mallada basalis on modified artificial diets. PLOS ONE 12(9): e0185223. https://doi.org/10.1371/journal.pone.0185223
- Yahia E. M. 2023. Sustainable Production and Postharvest Handling of Avocado. Burleigh Dodds Science Publishing Limited, Cambridge, 400 pp.
