Abstract
The 28-spotted potato ladybird beetle Henosepilachna vigintioctomaculata is an endemic pest of field crops in the Russian Far East. The study on the morphotypic structure of a population of this phytophagous insect can facilitate the monitoring of processes occurring in ecosystems. It might contribute to the research on the endemic fauna of the Russian Far East and reveal how varieties form resistance to pesticides. To study the polymorphism and structure of a potato ladybird beetle population, an analysis of elytral color patterns was conducted. The following features were considered: the size and shape of spots, the intensity of color, the position of spots on the elytra relative to the elytral suture, the presence of merged spots. As the result, nine morphotypes were identified. The morphotype A2 was the most frequent (47.81 %) and followed by the morphotypes A1 and A6. The morphotype A9 had the lowest frequency of occurrence (1.82 %). It was also determined that morphotypes differed in the linear dimension of spots on the elytra. The form A2 was characterized by the largest spots. The size of the color patterns varied from 104.98 ± 0.071 to 297.01 ± 0.065 µ. The form A1 had the smallest spots.
References
- Abrosimova O. A. 2006. The biology of reproduction and development: series of lectures. Gorbunova V.Yu. (Eds.). Ufa: Izdatel’stvo BGPU. 140 pp.
- Chaikovskii Yu. V. 2006. The science of the development of life. Theory of evolution. Moscow: Publishing house KMK. 712 pp.
- Fasulati S. R. 1986. Analyzing the structure of populations of the Colorado potato beetle and its importance for developing zonal systems of potato protection. The Bulletin of All-Russian Institute of Plant Protection 63: 38–43
- Golub V. B. & Likhman N. S. 2003. Phenetic analysis of groups of the plant bug Lygus rugulipennis Popp. (Heteroptera, Miridae) populating the city of Voronezh and the suburban area. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy 1: 41–45.
- Ikemoto H. 1955. Studies on Epilahna vigintioctomaculata Motschulsky and its allied species. Report 3. Relation between the local type of Epilachna vigintioctomaculata and E.pustulosa. Seibutsu Sinka 2(2–3):1–11. (In Japanese)
- Katakura H. 1947. Variation analysis of elytral maculation in Henosepilachna vigintioctomaculata complex (Coleoptera, Coccinellidae). Journal of the Faculty of Science Hokkaido University. Series VI. Zoology 19(2): 445–455.
- Kawabe W. 1947. Statistical studies on the variation of color pattern in the Coccinellidae I. Variation of elytral pattern of Epilachna vigintioctomaculata Motcschulsky. Seibutu 2(3): 71–81 (In Japaness)
- Konstantinov V. M., Rezanov A. G. & Fadeeva E. O. 2008. General Biology: textbook for students of institutions of secondary vocational education. Moscow: Publishing House “Academia”. 256 pp.
- Korochkin L. I. 1999. Introduction to the genetics of development. Moscow: Nauka. 253 pp.
- Koyama N. 1962. Epilachna lady beetles in Nagano Prefectures. Entomological Society of Shinshu, Ueda, Nagano pref., Japan, 35 pp. (In Japanese)
- Kurisaki M. 1932. On the maculation of the lady beetles belonging to the genus Epilachna. Zoo! Magazine 44: 458–466 (In Japaness)
- Kuwajima M., Kobayashi N., Katoh T. & Katakura H. 2010. Detection of ecological hybrid inviability in a pair of sympatric phytophagous ladybird beetles (Henosepilachna spp.). Entomologia Experimentalis et Applicata 134(3): 280–286. https://doi.org/10.1111/j.1570-7458.2009.00955.x
- Levykh A. Yu. & Puzynina G. G. 2013. Phenetic analysis of animal populations under the conditions of an urban ecosystem. Tyumen State University Herald 6: 87–95.
- Lyabzina S. N. & Uzenbaev S. D. 2013. The ecology of burying beetles (Coleoptera, Silphidae) in Karelia. Proceedings of Petrozavodsk State University. Series: Natural and Technical Sciences 2: 27–31.
- Matsishina N. V., Fisenko P. V., Ermak M. V., Sobko O. A., Volkov D. I. & Baleevskikh A. G. 2021. Food as a factor of fertility, development duration, and changes in morphometric parameters Henosepilachna vigintioctomaculata (Motschulsky). Vegetable Crops of Russia 5: 81–88. https://doi.org/10.18619/2072-9146-2021-5-81-88
- Miko I. & Deans A. R. 2018. Phenotypes in insect biodiversity research. pp. 789–800. In book: Insect Biodiversity. https://doi.org/10.1002/9781118945582.ch25
- Moczek A. P. 2010. Phenotypic plasticity and diversity in insects. Philosophical Transactions Royal Society London B: Biological Society 365(1540): 593–603. https://doi.org/10.1098/rstb.2009.0263
- Moroney M. J. 1956. Facts from Figures. Harmondsworth. Middlesex: Penguin Books Ltd. 472 pp.
- Nosil P., Villoutreix R., de Carvalho C. F., Feder J. L., Parchman T. L. & Gompert Z. 2020. Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour Nature. Ecology & Evolution 4: 1673–1684. https://doi.org/10.1038/s41559-020-01305-y
- Pigliucci M. 2001. Phenotypic plasticity Beyond Nature and Nurture. Johns Hopkins University Press. 344 pp. https://doi.org/10.56021/9780801867880
- Schlichting C. D. & Pigliucci M. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated. 378 pp.
- Shlyakhtin G. V., Anikin V. V. & Mosolova E. Yu. 2014. Phenetic analysis of populations of the seven-spot ladybird (Coccinella septempunctata L.) and its role in bioindicator studies. Entomological and Parasitological Investigations in Volga Region 11: 7–13.
- Suslov V. V., Gunbin K. V. & Kolchanov N. A. 2004. Genetic mechanisms of the coding of biological complexity. Ecological genetics 2(1): 13–26. https://doi.org/10.17816/ecogen2113-26
- Szekely G. J. & Rizzo M. L. 2005. Hierarchical clustering via joint between-within distances: extending Ward’s minimum variance method. Journal of Classification 22(2): 151–183. https://doi.org/10.1007/s00357-005-0012-9
- Timofeev-Resovskii N. V. & Ivanov V. I. 1966. Some questions of phenogenetics. pp. 114–130. In: Topical Issues of Modern Genetics. Moscow, Izdatel’stvo MGU.
- Timofeev-Resovskii N. V. & Svirezhev Yu. M. 1966. On adaptive polymorphism in populations of Adalia bipunctata. Problemy kibernetiki (Problems of cybernetics). 16: 137–146.
- Timofeev-Resovskii N. V., Yablokov A. V. & Glotov N. V. 1973. On the Theory of Population. Moscow, Nauka, 278 pp.
- Trofimov I. E. 2008. Some results of the population and phenetic analysis of Nicrophorus vespillo (Coleoptera, Silphidae) from the pine wood of Kaluga city. Zoological Journal 87(6): 658–664. https://doi.org/10.1134/S0013873808060031
- Vasil’ev A. G., Vasil’eva I. A. & Bol’shakov V. N. 2007. Phenogenetic Variation and Research Methods. Textbook. Ekaterinburg, Izdatel’stvo Ural’skogo universiteta. 279 pp.
- Vasil’ev A. G., Vasil’eva I. A. & Bol’shakov V. N. 2007. Phenogenetic Variability and Methods her Studying. Ekaterinburg, Ural University Publishing House, 279 pp. (In Russian)
- Ward C. M., Aumann R. A., Whitehead M. A., Nikolouli K., Leveque G., Gouvi G., Fung E., Reiling S. J., Djambazian H., Hughes M. A., Whiteford S., Caceres-Barrios C., Thu N. M. Nguyen, Choo A., Crisp P., Sim S. B., Geib S. M., Marec F., Häcker I., Ragoussis J., Darby A. C., Bourtzis K., Baxter S. W. & Schetelig M. F. 2021. White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter. Nature Communications 12(1): 112. https://doi.org/10.1038/s41467-020-20680-5
- Yablokov A. V. & Larina N. I. 1985. Introduction to the phenetics of populations. Moscow, Vysshaya shkola. 160 pp.
- Yan J. & Zhang X. 2021. Kernel Two-Sample Tests in High Dimension: Interplay Between Moment Discrepancy and Dimension-and-Sample Orders. [Electronic resource]. URL: https://www.researchgate.net/publication/357552952_Kernel_Two-Sample_Tests_in_High_Dimension_Interplay_Between_Moment_Discrepancy_and_Dimension-and-Sample_Orders
- Yarygin V. N., Vasil’eva V. I., Volkov I. N. & Sinel’shchikova V. V. 2003. Biology. Vol. 1. Moscow, Vysshaya shkola. 432 pp.
- Zhivotovskij L. A. 1980. The indicator of intra-population diversity. Journal of General Biology 41(6): 828–836.