Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-08-03
Page range: 1-11
Abstract views: 232
PDF downloaded: 5

Intensive monitoring of the butterflies of the UNESCO MAB reserve of Monte Peglia (Central Italy) reveals strong potential for local extinctions in a Mediterranean area

Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Florence, Italy
Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Florence, Italy
Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Florence, Italy
Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Florence, Italy
ZOOLAB, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
Presidente avv. della Riserva Mondiale della Biosfera Unesco del Monte Peglia, Via Guglielmo Oberdan 56, 06121, Perugia, Italy
Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Florence, Italy
Butterflies Lepidoptera Occurrence data Extinction Rarity Species richness

Abstract

The impact of human activities is resulting in increased losses of biodiversity on a local and global scale. Detecting local extinctions requires historical data and intensive field surveys, so as to ascertain the actual absence of a species. In this study, we fortnightly sampled 90 plots within the Monte Peglia UNESCO MAB Reserve (~60 km2) from April to October 2022. We also collected all available records for the Reserve in literature and iNaturalist. After our sampling, the Reserve appears in the 4% of the richest cells with similar size and altitude in central Italy. By applying the Potential-Extinction-upon-Time-Series (PETS) algorithm we evaluated the possibility for faunistic erosion in time. Twelve species that were recorded before 2010 but not confirmed in our field surveys produce a moderate PETS value of 21.3%. Based on literature and iNaturalist data, we also identified rare species as those occurring within a 50 km radius of the Reserve in the lowest quartile of occurrences. Approximately half of the unconfirmed species belonged to regionally rare taxa, while others belonged to taxa generally found at higher altitudes in the last decades. Monte Peglia Reserve qualifies as a perfect model for documenting possible local extinctions of butterflies in Mediterranean areas in the near future.

References

  1. Balletto E., Bonelli S. & Cassulo L. 2007. Insecta Lepidoptera Papilionoidea. In S. Ruffo & F. Stoch (Eds.), Checklist and Distribution of the Italian Fauna. 10,000 terrestrial and freshwater species. (pp. 257–261). Memorie del Museo Civico di Storia Naturale di Verona, 2° serie, Sez. Scienze della Vita.
  2. Barnosky A. D., Matzke N., Tomiya S., Wogan G. O. U., Swartz B., Quental T. B., Marshall C., McGuire J. L., Lindsey E. L., Maguire K. C., Mersey B. & Ferrer E. A. 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471(7336): 51–57. https://doi.org/10.1038/nature09678
  3. Bonelli S., Casacci L. P., Barbero F., Cerrato C., Dapporto L., Sbordoni V., Scalercio S., Zilli A., Battistoni A., Teofili C., Rondinini C. & Balletto E. 2018. The first red list of Italian butterflies. Insect Conservation and Diversity 11(5): 506–521. https://doi.org/10.1111/icad.12293
  4. Bonifacino M., Pasquali L., Sistri G., Menchetti M., Santini L., Corbella C., Bonelli S., Balletto E., Vila R., Dincă V. & Dapporto L. 2022. Climate change may cause the extinction of the butterfly Lasiommata petropolitana in the Apennines. Journal of Insect Conservation 26(6): 959–972. https://doi.org/10.1007/s10841-022-00441-z
  5. Brooks T. M., Cuttelod A., Faith D. P., Garcia-Moreno J., Langhammer P. & Pérez-Espona S. 2015. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas? Philosophical Transactions of the Royal Society B: Biological Sciences 370(1662). 1–7. https://doi.org/10.1098/rstb.2014.0019
  6. Cagnetta G., Labadessa R., Altini E., Clemente D. & Vovlas A. 2020. New records and an updated checklist of the butterfly fauna (Lepidoptera: Papilionoidea) of Puglia, south-eastern Italy. Phegea 48(4): 113-121.
  7. Ceballos G., Ehrlich P. R. & Raven P. H. 2020. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proceedings of the National Academy of Sciences of the United States of America 117(24): 13596–13602. https://doi.org/10.1073/pnas.1922686117
  8. Chowdhury S., Jennions M. D., Zalucki M. P., Maron M., Watson J. E. M. & Fuller R. A. 2022. Protected areas and the future of insect conservation. Trends in Ecology and Evolution 38(1): 85–95. https://doi.org/10.1016/j.tree.2022.09.004
  9. Dapporto L., Menchetti M., Vodă R., Corbella C., Cuvelier S., Djemadi I., Gascoigne‐Pees M., Hinojosa J. C., Lam N. T., Serracanta M., Talavera G., Dincă V. & Vila R. 2022. The atlas of mitochondrial genetic diversity for Western Palaearctic butterflies. Global Ecology and Biogeography 31: 2184–2190. https://doi.org/10.1111/geb.13579
  10. Fattorini S., Di Giulio A. & Dapporto L. 2013. Measuring insect rarity: practical issues, pragmatic approaches. Journal of Insect Biodiversity 1(10): 1–21. https://doi.org/10.12976/jib/2013.1.10
  11. Girardello M., Chapman A., Dennis R., Kaila L., Borges P. A. V. & Santangeli A. 2019. Gaps in butterfly inventory data: A global analysis. Biological Conservation 236: 289–295. https://doi.org/10.1016/j.biocon.2019.05.053
  12. Hallmann C. A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H., Stenmans W., Müller A., Sumser H., Hörren T., Goulson D. & De Kroon H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10): e0185809. https://doi.org/10.1371/journal.pone.0185809
  13. Kadlec T., Vrba P., Kepka P., Schmitt T. & Konvicka M. 2010. Tracking the decline of the once-common butterfly: Delayed oviposition, demography and population genetics in the hermit Chazara briseis. Animal Conservation 13(2): 172–183. https://doi.org/10.1111/j.1469-1795.2009.00318.x
  14. Labadessa R., Cagnetta G., Desaphy J. F., Bonifacino M., Dodaro G., Festa D., Monterastelli E., Papa V. E., Zollo L., Balletto E. & Dapporto L. 2021. Using occurrence data to evaluate extinction reveals a strong resilience of butterflies in a National Park of Southern Europe (Alta Murgia National Park). Journal of Insect Biodiversity 28(1): 1–12. https://doi.org/10.12976/JIB/2021.28.1.1
  15. Menchetti M., Talavera G., Cini A., Salvati V., Dincă V., Platania L., Bonelli S., Balletto E., Vila R. & Dapporto L. 2021. Two ways to be endemic. Alps and Apennines are different functional refugia during climatic cycles. Molecular Ecology 30(5):1297–1310. https://doi.org/10.1111/mec.15795
  16. Minter M., Dasmahapatra K. K., Thomas C. D., Morecroft M. D., Tonhasca A., Schmitt T., Siozios S. & Hill J. K. 2020. Past, current, and potential future distributions of unique genetic diversity in a cold-adapted mountain butterfly. Ecology and Evolution 10(20): 11155–11168. https://doi.org/10.1002/ece3.6755
  17. Numa C., van Swaay C., Wynhoff I., Wiemers M., Barrios V., Allen D., Sayer C., López Munguira M., Balletto E., Benyamini D., Beshkov S., Bonelli S., Caruana R., Dapporto L., Franeta F., Garcia-Pereira P., Karaçetin E., Katbeh-Bader A., Maes D., … Welch H. 2016. The status and distribution of Mediterranean butterflies. In The status and distribution of Mediterranean butterflies. IUCN, Malaga, Spain. https://doi.org/10.2305/iucn.ch.2016.mra.6.en
  18. Ohlemüller R., Anderson B. J., Araújo M. B., Butchart S. H. M. Kudrna O., Ridgely R. S. & Thomas C. D. 2008. The coincidence of climatic and species rarity: High risk to small-range species from climate change. Biology Letters 4(5): 568–572. https://doi.org/10.1098/rsbl.2008.0097
  19. Ollerton J. 2017. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics 48: 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919
  20. Rödder D., Schmitt T., Gros P., Ulrich W. & Habel J. C. 2021. Climate change drives mountain butterflies towards the summits. Scientific Reports 11(1): 1-12. https://doi.org/10.1038/s41598-021-93826-0
  21. Sánchez-Bayo F. & Wyckhuys K. A. G. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27. https://doi.org/10.1016/j.biocon.2019.01.020
  22. Sánchez-Fernández D., Fox R., Dennis R. L. H. & Lobo J. M. 2021. How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness. Biodiversity and Conservation 30(3): 889–902. https://doi.org/10.1007/s10531-021-02122-w
  23. Santorufo L., Ienco A. & Scalercio S. 2021. Climate warming drives divergence of montane butterfly communities in Southern Italy. Regional Environmental Change 21(2): 1–13. https://doi.org/10.1007/s10113-021-01782-2
  24. Scalercio S. 2001. Biodiversità e sinecologia dei Lepidotteri Ropaloceri in un paesaggio mediterraneo: La Sila Greca (Italia, Calabria) (Lepidoptera Hesperioidea, Papilionoidea). Rivista Del Museo Civico Di Scienze Naturali “E. Caffi” Bergamo 20: 13–31.
  25. Sistri G., Menchetti M., Santini L., Pasquali L., Sapienti S., Cini A., Platania L., Balletto E., Barbero F., Bonelli S., Casacci L. Pietro Dincă V., Vila R., Mantoni C., Fattorini S. & Dapporto L. 2022. The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity 15(1): 136–148. https://doi.org/10.1111/icad.12538
  26. Sobral-Souza T., Stropp J., Santos J. P., Prasniewski V. M., Szinwelski N., Vilela B., Freitas A. V. L., Ribeiro M. C. & Hortal J. 2021. Knowledge gaps hamper understanding the relationship between fragmentation and biodiversity loss: the case of Atlantic Forest fruit-feeding butterflies. PeerJ Computer Science 9: 1–23. https://doi.org/10.7717/peerj.11673
  27. Stoppa F. 1996. The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bulletin of Volcanology 57: 563–577.
  28. Stoppa F. & Sforna S. 1995. Geological map of the San Venanzo volcano (Central Italy): explanatory notes. Acta Vulcanologica 7(1): 85–91.
  29. Troudet J., Grandcolas P., Blin A., Vignes-Lebbe R. & Legendre F. 2017. Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7(1): 1–14. https://doi.org/10.1038/s41598-017-09084-6
  30. Vavrek M. J. 2011. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica 14(1): 1T. R package version 0.4.0.
  31. Vogel G. 2017. Where have all the insects gone? Science 356(6338): 576–579. https://doi.org/10.1126/science.356.6338.576
  32. Wagner D. L. 2020. Insect declines in the anthropocene. Annual Review of Entomology 65: 457–480. https://doi.org/10.1146/annurev-ento-011019-025151
  33. Wagner D. L., Grames E. M., Forister M. L., Berenbaum M. R. & Stopak D. 2021. Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences of the United States of America 118(2): 1–10. https://doi.org/10.1073/PNAS.2023989118
  34. Wiemers M., Balletto E., Dinca V., Fric Z. F., Lamas G., Lukhtanov V., Munguira M. L., VanSwaay C. A. M., Vila R., Vliegenthart A., Wahlberg N. & Verovnik R. 2018. An updated checklist of the European butterflies (Lepidoptera, Papilionoidea). ZooKeys 811: 9–45. https://doi.org/10.3897/zookeys.811.28712