Skip to main content Skip to main navigation menu Skip to site footer
Type: Review Article
Published: 2025-04-03
Page range: 42-54
Abstract views: 159
PDF downloaded: 6

Ecological niche modeling studies in bees: Bibliometric Analysis

Programa de Pós-Graduação em Modelagem da Ciências da Terra e do Ambiente (PPGM) – Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
Programa de Pós-graduação em Modelagem em Ciências da Terra e do Ambiente, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil. Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil.
Programa de Pós-graduação em Modelagem em Ciências da Terra e do Ambiente, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil. Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil.
Programa de Pós-graduação em Modelagem em Ciências da Terra e do Ambiente, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil. Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, Brasil.
Niche modeling ecology of bees bibliometric methods

Abstract

This article investigates the profile of scientific production related niche modeling of bees through a bibliometric study using the Scopus database. VOSviewer software was utilized to identify the most interconnected terms, analyzing the countries and authors with the highest publication rates, the most cited authors, and the frequency of these publications. The results revealed a notable increase in scientific output from 1977 to 2023, with peak production in 2020 and 2023, totaling 233 articles with an average of 5.18 published annually. These works were published in various countries, with Brazil occupying the leading position, having 217 connections and 118 journals publishing literature on the topic, ten of which published more than four studies. We selected 25 articles that explored different models for data integration, with most studies employing the species distribution modeling method, which accounted for 72% of the analyzed studies. Additionally, 67% of the data utilized environmental variables from WorldClim. The most studied bees, belonging to the genus Bombus Latreille, 1802 and the tribe Euglossini, have solitary habits and play crucial roles in the biological reproduction of numerous native and agricultural plant species.

References

  1. Biella P., Bogliani G., Cornalba M., Manino A., Neumayer J., Porporato M., Rasmont P. & Milanesi P. 2017. Distribution patterns of the cold-adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). Journal of Insect Conservation 21: 357–366. https://doi.org/10.1007/s10841-017-9983-1

  2. Bystriakova N., Griswold T., Ascher J. S. & Kuhlmann M. 2018. Key environmental determinants of global and regional richness and endemism patterns for a wild bee subfamily. Biodiversity and Conservation 27(2): 287–309. https://doi.org/10.1007/s10531-017-1432-7

  3. Casey L. M., Rebelo H., Rotheray E. & Goulson D. 2015. Evidence for habitat and climatic specializations driving the long‐term distribution trends of UK and Irish bumblebees. Diversity and Distributions 21(8): 864–875. https://doi.org/10.1111/ddi.12344

  4. Cheng W. & Ashton L. 2021. Ecology: what affects the distribution of global bee diversity. Current Biology 31(3): 127–128. https://doi.org/10.1016/j.cub.2020.11.044

  5. D’Amen M., Mod H. K., Gotelli N. J. & Guisan A. 2018. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co‐occurrence. Ecography 41(8): 1233–1244. https://doi.org/10.1111/ecog.03148

  6. Decourtye A., Alaux C., Le Conte Y. & Henry M. 2019. Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. Current Opinion in Insect Science 35: 123–131. https://doi.org/10.1016/j.cois.2019.07.008

  7. Elias M. A., Borges F. J., Bergamini L. L., Franceschinelli E. V. & Sujii E. R. 2017. Climate change threatens pollination services in tomato crops in Brazil. Agriculture, Ecosystems & Environment 239: 257–264. https://doi.org/10.1016/j.agee.2017.01.026

  8. Elith J. & Leathwick J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

  9. Elsevier. 2023. Scopus. Available at https://www.elsevier.com/solutions/scopus. Accessed on December 29, 2023.

  10. Erickson K. D. & Smith A. B. 2023. Modeling the rarest of the rare: A comparison between multi‐species distribution models, ensembles of small models, and single‐species models at extremely low sample sizes. Ecography 2023: e06500. https://doi.org/10.1111/ecog.06500

  11. FAO—Food and Agriculture Organization of the United Nations. 2016. Pollinators Vital to Our Food Supply Under Threat; Food and Agriculture Organization of the United Nations: Rome, Italy. Available at: https://www.fao.org/newsroom/detail/Pollinators-vital-to-our-food-supply-under-threat/en; last accessed in January, 2024.

  12. Fick S. E. & Hijmans R. J. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086

  13. Franklin J. 2023. Species distribution modeling supports the study of past, present, and future biogeographies. Journal of Biogeography 50(9): 1533–1545. https://doi.org/10.1111/jbi.14617

  14. Giannini T. C., Acosta A. L., Garófalo C. A., Saraiva A. M., Alves-dos-Santos I. & Imperatriz-Fonseca V. L. 2012. Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecological Modelling 244: 127–131. https://doi.org/10.1016/j.ecolmodel.2012.06.035

  15. Global Biodiversity Facilities (GBIF). 2025. Available at: https://www.gbif.org/es/occurrence/search?q=Bombus. Last accessed on Jan. 19, 2025.

  16. Haigh T., Russell A. L. & Dutton W. H. 2015. Histories of the Internet: Introducing a special issue of information & culture. Information & Culture 50(2): 143–159. https://doi.org/10.1353/lac.2015.0006

  17. Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G. & Jarvis A. 2005.Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978. https://doi.org/10.1002/joc.1276

  18. Iturbe-Requena S. L., Prado-Ochoa M. G., Munoz-Guzman M. A., Carrillo-Miranda L., Velazquez-Sanchez A. M., Angeles E. & Alba-Hurtado F. 2020. Acute oral and contact toxicity of new ethyl-carbamates on the mortality and acetylcholinesterase activity of honey bee (Apis mellifera). Chemosphere 242: 125293. https://doi.org/10.1016/j.chemosphere.2019.125293

  19. Klein A. M., Vaissière B. E., Cane J. H., Steffan-Dewenter I., Cunningham S. A., Kremen C. & Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608): 303–313. https://doi.org/10.1098/rspb.2006.3721

  20. Luo D., Silva D. P., Júnior P. D. M., Pimenta M. & Caldas M. M. 2020. Model approaches to estimate spatial distribution of bee species richness and soybean production in the Brazilian Cerrado during 2000 to 2015. Science of the Total Environment 737: 139674. https://doi.org/10.1016/j.scitotenv.2020.139674

  21. Malekpour M. R., Abbasi-Kangevari M., Azadnajafabad S., Ghamari S. H., Rezaei N., Rezazadeh-Khadem S., Rezaei N., Aminorroaya A., Abdolhamidi E., Fateh S. M., Haghshenas R., Roshani S., Ahmadi N., Jamshidi K., Naderimagham S. & Farzadfar F. 2021. How the scientific community responded to the COVID-19 pandemic: a subject-level time-trend bibliometric analysis. Plos One 16(9): e0258064. https://doi.org/10.1371/journal.pone.0258064

  22. Martínez M. A., Cobo M. J., Herrera M. & Herrera-Viedma E. 2015. Analyzing the scientific evolution of social work using science mapping. Research on Social Work Practice 25(2): 257–277. https://doi.org/10.1080/0907676X.2015.1010550

  23. Martins A. C., Silva D. P., De Marco P. & Melo G. A. 2015. Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation 19: 33–43. https://doi.org/10.1007/s10841-014-9740-7

  24. Milanesi P., Giraudo L., Morand A., Viterbi R. & Bogliani G. 2016. Does habitat use and ecological niche shift over the lifespan of wild species? Patterns of the bearded vulture population in the Western Alps. Ecological Research 31: 229–238. https://doi.org/10.1007/s11284-015-1329-4

  25. Orr M. C., Hughes A. C., Chesters D., Pickering J., Zhu C. D. & Ascher J. S. 2021. Global Patterns and Drivers of Bee Distribution. Current Biology 31(3): 451–458. https://doi.org/ 10.1016/j.cub.2023.03.058

  26. Park J., Kim H., Kim K. W, Cho J. H., Chung W. S. & Song M. Y. 2021. Bibliometric analysis of research trends on acupuncture for neck pain treatment over the past 20 years. Journal of Pain Research 14: 3207–3221. https://doi.org/ 10.2147/JPR.S331514.

  27. Peterson A. T. & Soberón J. 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação 10(2): 102–107. https://doi.org/10.4322/natcon.019

  28. Potts S. G., Imperatriz-Fonseca V., Ngo H. T., Aizen M. A., Biesmeijer J. C., Breeze T. D., Dicks L. V., Garibaldi L. A., Hill R., Settele J. & Vanbergen A. J. 2016. Safeguarding pollinators and their values to human well-being. Nature 540: 220–229. https://doi.org/10.1038/nature20588

  29. Poulsen N. R. & Rasmussen C. 2020. Island bees: do wood nesting bees have better island dispersal abilities? Apidologie 51(6): 1006–1017. https://doi.org/ 10.1007/s13592-020-00778-x

  30. Qi S., Zhu L., Wang D., Wang C., Chen X., Xue X. & Wu L. 2020. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro. Ecotoxicology and Environmental Safety 1: 190–10101. https://doi.org/10.1016/j.ecoenv.2019.110101

  31. Rousseau R., Garcia-Zorita C. & Sanz-Casado E. 2023. Publications during COVID-19 times: An unexpected overall increase. Journal of Informetrics 17: 4–101461. https://doi.org/10.1016/j.joi.2023.101461

  32. Şenel E. 2019. A holistic analysis of bee venom literature: Bibliometric evaluation of the global publication productivity on bee venom between 1975 and 2017. Hitit Medical Journal 1(1): 6–11.

  33. Sirois-Delisle C. & Kerr J. T. 2018. Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports 8: 14464. https://doi.org/10.1038/s41598-018-32665-y

  34. Sivankalai S., Sivasekaran K. & Virumandi A. 2021. Measuring the honey bee research output: Scientometrics analysis from 2004 to 2019. International Journal of Modern Agriculture 10(2): 2305–7246.

  35. Thompson D. F. & Walker C. K. 2015. A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 35 (6): 551–559. https://doi.org/10.1002/phar.1586

  36. Tsiftsis S. & Djordjević V. 2020. Modelling sexually deceptive orchid species distributions under future climates: The importance of plant–pollinator interactions. Scientific Reports 10: 10623. https://doi.org/10.1038/s41598-020-67491-8

  37. Van Eck N. J. & Waltman L. 2014. Visualizing Bibliometric Networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods. Springer 1: 285–320. https://doi.org/10.1007/978-3-319-10377-8_13

  38. Van Eck N. J. & Waltman L. 2017. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 111: 1053–1070. https://doi.org/10.1007/s11192-017-2300-7

  39. Vasconcelos R. N., Lima A. T. C., Lentini C. A., Miranda G. V., Mendonça L. F., Silva M. A., Cambuí E. C. B., Lopes J. M. & Porsani M. J. 2020. Oil spill detection and mapping: A 50-year bibliometric analysis. Remote Sensing 12(21): 3647. https://doi.org/10.3390/rs12213647

  40. Zakaria R., Ahmi A., Ahma A. H., Othman Z., Azman K. F., Ab Aziz C. B., Ismail C. A. & Shafin N. 2021. Visualising and mapping a decade of literature on honey research: A bibliometric analysis from 2011 to 2020. Journal of Apicultural Research 60(3): 359–368. https://doi.org/10.1080/00218839.2021.1898789

  41. Ziegler C., Sinigaglia T., Martins M. E. S. & Souza A. M. 2021. Technological advances to reduce Apis mellifera mortality: A bibliometric analysis. Sustainability 13(15): 8305. https://doi.org/10.3390/su13158305

  42. Zupic I. & Čater T. 2015. Bibliometric methods in management and organization. Organizational Research Methods 18(3): 429–472. https://doi.org/10.1177/1094428114562629