Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-27
Page range: 64-74
Abstract views: 110
PDF downloaded: 108

The rise of modern-type entomofauna in the Triassic

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
Regional Geological Survey Institute of Hebei Province, Langfang 065000, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
Insect diversity Coleoptera Terrestrial ecosystems Mass extinction Faunal composition

Abstract

Insects are the major contributor of Earth’s biodiversity, as the most diverse group in the modern biosphere. Considerable debates on the timing of entomofauna modernization remain, but most recent studies indicate it could have happened during the Triassic, following the “Great Dying” across the Permian–Triassic boundary. Using global insect diversity data and fossil records of select representative faunas, we performed computational analysis and comparative research to explore the compositional dynamics of entomofauna in the Permian and Triassic. Our analysis shows that: 1) following the Permian–Triassic mass extinction, insect diversity rapidly increased in the Anisian Stage of the Middle Triassic; 2) modern-dominating orders, such as Coleoptera, Diptera, Hymenoptera, Hemiptera, and Orthoptera exceeded half of the total diversity in the Ladinian; 3) In the Carnian of the Late Triassic, Coleoptera had emerged to be the dominating group of the entomofauna. These findings indicate that the rise of modern-typed entomofauna can be traced back to the Ladinian–Carnian (late Middle Triassic–early Late Triassic), much earlier than the Cretaceous Terrestrial Revolution.

References

  1. Anderson J. M., Anderson H. M. & Cruickshank A. R. I. 1998. Late Triassic ecosystems of the Molteno/Lower Elliot biome of southern Africa. Palaeontology 41: 387–421.

  2. Aristov D. S., Bashkuev A. S., Golubev V. K., Gorochov A. V., Karasev E. V., Kopylov D. S., Ponomarenko A. G., Rasnitsyn A. P., Rasnitsyn D. A., Sinitshenkova N. D., Sukatsheva I. D. & Vassilenko D. V. 2013. Fossil insects of the middle and upper Permian of European Russia. Paleontological Journal 47: 641‒832. https://doi.org/10.1134/S0031030113070010

  3. Asar Y. Ho S. Y. & Sauquet H. 2022. Early diversifications of angiosperms and their insect pollinators: were they unlinked?. Trends in Plant Science 27(9): 858‒869. https://doi.org/10.1016/j.tplants.2022.04.004

  4. Bambach R. K., Knoll A. H. & Sepkoski Jr J. J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences 99(10): 6854‒6859.

  5. https://doi.org/10.1073/pnas.092150999

  6. Bashkuev A., Sell J., Aristov D., Ponomarenko A., Sinitshenkova N. & Mahler H. 2012. Insects from the Buntsandstein of lower Franconia and Thuringia. Paläontologische Zeitschrift 86: 175‒185. https://doi.org/10.1007/s12542-011-0119-8

  7. Benton M. J. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1558): 3667‒3679.

  8. https://doi.org/10.1098/rstb.2010.0269

  9. Benton M. J. 2016. The Triassic. Current Biology 26(23): R1214‒R1218. https://doi.org/10.1016/j.cub.2016.10.060

  10. Benton M. J. & Newell A. J. 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research 25(4): 1308‒1337. https://doi.org/10.1016/j.gr.2012.12.010

  11. Benton M. J., Wilf P. & Sauquet H. 2022. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist 233(5): 2017‒2035. https://doi.org/10.1111/nph.17822

  12. Benton M. J. & Wu F. X. 2022. Triassic revolution. Frontiers in earth Science 10: 899541.

  13. https://doi.org/10.3389/feart.2022.899541

  14. Brayard A., Krumenacker L. J., Botting J. P., Jenks J. F., Bylund K. G., Fara E., Vennin E., Olivier N., Goudemand N., Saucède T., Charbonnier S., Romano C., Doguzhaeva L., Thuy B., Hautmann M., Stephen D. A., Thomazo C. & Escarguel G. 2017. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances 3(2): e1602159. https://doi.org/10.1126/sciadv.160215

  15. Cai C. Y., Tihelka E., Giacomelli M., Lawrence J. F., Ślipiński A., Kundrata R., Yamamoto S., Thayer M. K., Newton A. F., Leschen R. A. B., Gimmel M. L., Lü L., Engel M. S., Bouchard P., Huang D. Y., Pisani D. & Donoghue P. C. J. 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9(3): 211771. https://doi.org/10.1098/rsos.211771

  16. Clapham M. E., Karr J. A., Nicholson D. B., Ross A. J. & Mayhew P. J. 2016. Ancient origin of high taxonomic richness among insects. Proceedings of the Royal Society B: Biological Sciences 283(1824): 20152476. https://doi.org/10.1098/rspb.2015.2476

  17. Cleal C. J. & Cascales-Miñana B. 2014. Composition and dynamics of the great Phanerozoic Evolutionary Floras. Lethaia 47(4): 469‒484. https://doi.org/10.1111/let.12070

  18. Dai X., Davies J. H. F. L., Yuan Z. W., Brayard A., Ovtcharova M., Xu G. H., Liu X. K., Smith C. P. A., Schweitzer C. E., Li M.T., Perrot M. G., Jiang S. Y., Miao L. Y., Cao Y. R., Yan J., Bai R. Y., Wang F. Y., Guo W., Song H. Y., Tian L., Dal Corso J., Liu Y. T., Chu D. L. & Song H. J. 2023. A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem. Science 379(6632): 567‒572. https://doi.org/10.1126/science.adf1622

  19. Dal Corso1 J., Bernardi M., Sun Y. D., Song H. J., Seyfullah L. J., Preto N., Gianolla P., Ruffell A., Kustatscher E., Roghi G., Merico A., Hohn S., Schmidt A. R., Marzoli A., Newton R. J., Wignall P. B. & Benton M. J. 2020. Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances 6(38), eaba0099. https://doi.org/10.1126/sciadv.aba0099

  20. DiMichele W. A., Kerp H., Tabor N. J. & Looy C. V. 2008. The so-called “Paleophytic–Mesophytic” transition in equatorial Pangea—Multiple biomes and vegetational tracking of climate change through geological time. Palaeogeography, Palaeoclimatology, Palaeoecology 268(3‒4): 152‒163. https://doi.org/10.1016/j.palaeo.2008.06.006

  21. Eggleton P. 2020. The state of the world's insects. Annual Review of Environment and Resources 45(1): 61‒82. https://doi.org/10.1146/annurev-environ-012420-050035

  22. Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O. & Taylor F. J. R. 2013. The evolution of modern eukaryotic phytoplankton. science 305(5682): 354‒360. https://doi.org/10.1126/science.1095964

  23. Gall J. C. & Grauvogel-Stamm L. 2005. The early Middle Triassic ‘Grès à Voltzia’Formation of eastern France: a model of environmental refugium. Comptes Rendus Palevol 4(6‒7): 637‒652. https://doi.org/10.1016/j.crpv.2005.04.007

  24. Grimaldi D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 8(2): 373‒406. https://doi.org/10.2307/2666181

  25. Grimaldi D. & Engel M. S. 2005. Evolution of the Insects. Cambridge University Press, Cambridge, 755 pp.

  26. Gui S. M., Liu Y. C. & Tian L. 2023. Evolution of insect diversity in the Permian and Triassic. Palaeoentomology 6(5): 472‒481. https://doi.org/10.11646/palaeoentomology.6.5.6

  27. Jell P. A. 2004. The fossil insects of Australia. Memoirs of the Queensland Museum 50(1): 1‒124.

  28. Jouault C., Nel A., Perrichot V., Legendre F. & Condamine F. L. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nature Communications 13(1): 7512. https://doi.org/10.6084/m9.figshare.c.6296196.v2

  29. Jouault C., Nel A., Perrichot V., Legendre F. & Condamine F. L. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nature Communications 13(1): 7512. https://doi.org/10.1038/s41467-022-35284-4

  30. Labandeira C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28(1): 153‒193. https://doi.org/10.1146/annurev.ecolsys.28.1.153

  31. Labandeira C. C. 2001. The rise and diversification of insects, pp. 82‒88. In: Palaeobiology. Vol. 2 (D. E. G. Briggs and P. R Crowther, editors). Blackwell Publishing, London, 583 pp.

  32. Labandeira C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist 51(1): 14‒29. https://doi.org/10.1093/ae/51.1.14

  33. Labandeira C. C., Kustatscher E. & Wappler T. 2016. Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLoS One 11(11), e0165205. https://doi.org/10.1371/journal.pone.0165205

  34. Labandeira C. C. & Sepkoski Jr J. J. 1993. Insect diversity in the fossil record. Science 261(5119): 310‒315. https://doi.org/10.1126/science.11536548

  35. Labandeira C. C. 2006. Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny 64: 53‒94.

  36. Labandeira C. C. 2013. A paleobiologic perspective on plant–insect interactions. Current Opinion in Plant Biology 16(4): 414‒421. https://doi.org/10.1016/j.pbi.2013.06.003

  37. Lehtonen S., Silvestro D., Karger D. N., Scotese C., Tuomisto H., Kessler M., Peña C., Wahlberg N. & Antonelli A. 2017. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports 7(1): 4831. https://doi.org/10.1038/s41598-017-05263-7

  38. Liu H. Y., Wei H. B., Chen J., Guo Y., Zhou Y., Gou X. D., Yang S. L. & Feng Z. 2020. A latitudinal gradient of plant–insect interactions during the late Permian in terrestrial ecosystems? New evidence from Southwest China. Global and Planetary Change 192: 103248. https://doi.org/10.1016/j.gloplacha.2020.103248

  39. Lukashevich E. D. 2021. The oldest Diptera (Insecta) from the Upper Buntsandstein (early Middle Triassic) of Europe. Zootaxa 5067(1): 135‒143. https://doi.org/10.11646/zootaxa.5067.1.10

  40. Lü L., Cai C. Y., Zhang X., Newton A. F., Thayer M. K. & Zhou H. Z. 2020. Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions. Current Zoology 66: 435–444.

  41. https://doi.org/10.1093/cz/zoz053

  42. McKenna D. D., Sequeira A. S., Marvaldi A. E. & Farrell B. D. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences 106(17): 7083‒7088.

  43. https://doi.org/10.1073/pnas.0810618106

  44. Misof B., Liu S., Meusemann K., Peters R. S., Donath A., Mayer C., Frandsen P. B., Ware J., Flouri T., Beutel R. G., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust J., Aberer A. J., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A. et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210): 763‒767. https://doi.org/10.1126/science.1257570

  45. Nel A. 2015. Some misconceptions or preconceived ideas on the history of the Insects. BIO Web of Conferences 4: 00006. https://doi.org/10.1051/bioconf/20150400006

  46. Nel P., Bertrand S. & Nel A. 2018. Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Scientific Reports 8(1): 3516. https://doi.org/10.1038/s41598-018-21938-1

  47. Papier F., Nel A., Grauvogel-Stamm L. & Gall J. C. 2005. La diversité des Coleoptera (Insecta) du Trias dans le nord-est de la France. Geodiversitas 27(2): 181‒199.

  48. Peris D. & Condamine F. L. 2024. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nature Communications 15(1): 552. https://doi.org/10.6084/m9.figshare.24076725

  49. Pinheiro E. R., Iannuzzi R. & Duarte L. D. 2016. Insect herbivory fluctuations through geological time. Ecology 97(9): 2501–2510. https://doi.org/10.1002/ecy.1476

  50. Rasnitsyn A. P., Aristov D. S. & Rasnitsyn D. A. 2015. Dynamics of insect diversity during the Early and Middle Permian. Paleontological Journal 49: 1282‒1309. https://doi.org/10.1134/S0031030115120102

  51. Rix A. 2021. The Triassic insects of Denmark Hill, Ipswich, Southeast Queensland: the creation, use and dispersal of a collection. Memoirs of the Queensland Museum–Nature 62: 217‒242. https://doi.org/10.17082/j.2204-1478.62.2021.2020-11

  52. Roscher M., Stordal F. & Svensen H. 2011. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3‒4): 186‒200. https://doi.org/10.1016/j.palaeo.2011.05.042

  53. Schachat S. R. & Labandeira C. C. 2021. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Annals of the Entomological Society of America 114(2): 99‒118. https://doi.org/10.1093/aesa/saaa042

  54. Scotese C. R., Song H., Mills B. J. & van der Meer D. G. 2021. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503.

  55. Sepkoski J. J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10(2): 246‒267. https://doi.org/10.1017/S0094837300008186

  56. Shcherbakov D. E. 2008a. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontological Journal 42(1): 15‒31. https://doi.org/10.1134/S0031030108010036

  57. Shcherbakov D. E. 2008b. Madygen, Triassic Lagerstätte number one, before and after Sharov. Alavesia 2: 113‒124.

  58. Song H. J. & Tong J. N. 2016. Mass extinction and Survival during the Permian–Triassic Crisis. Earth Science 41(06): 901‒918. (In Chinese).

  59. https://doi.org/10.3799/dqkx.2016.077

  60. Song H. J., Wignall P. B. & Dunhill A. M. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science advances 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat509

  61. Sookias R. B., Butler R. J. & Benson R. B. 2012. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proceedings of the Royal Society B: Biological Sciences 279(1736): 2180‒2187. https://doi.org/10.1098/rspb.2011.2441

  62. Stork N. E. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annual Review of Entomology 63(1): 31‒45. https://doi.org/10.1146/annurev-ento-020117-043348

  63. Stork N. E., McBroom J., Gely C. & Hamilton A. J. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences 112(24): 7519‒7523. https://doi.org/10.1073/pnas.1502408112

  64. van Eldijk T. J., Wappler T., Strother P. K., van der Weijst C. M., Rajaei H., Visscher H. & van de Schootbrugge B. 2018. A Triassic-Jurassic window into the evolution of Lepidoptera. Science advances 4(1): e1701568. https://doi.org/10.1126/sciadv.1701568

  65. Vera E. I., Monferran M. D., Massaferro J., Sabater L. M., Gallego O. F., Perez Loinaze V. S., Moyano-Paz D., Agnolín F. L., Manabe M., Tsuhiji T. & Novas F. E. 2023. A Maastrichtian insect assemblage from Patagonia sheds light on arthropod diversity previous to the K/Pg event. Communications Biology 6(1): 1249. https://doi.org/10.1038/s42003-023-05596-2

  66. Vermeij G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3(3): 245‒258. https://doi.org/10.1017/S0094837300005352

  67. Vermeij G. J. & Grosberg R. K. 2010. The great divergence: when did diversity on land exceed that in the sea?. Integrative and Comparative Biology 50(4): 675‒682. https://doi.org/10.1093/icb/icq078

  68. Wang B., Xu C. P. & Jarzembowski E. A. 2022. Ecological radiations of insects in the Mesozoic. Trends in Ecology & Evolution 37(6): 529‒540. https://doi.org/10.1016/j.tree.2022.02.007

  69. Wappler T., Kustatscher E. & Dellantonio E. 2015. Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—Initial pattern and response to abiotic environmental perturbations. PeerJ 3: e921. https://doi.org/10.7717/peerj.921

  70. Wappler T., Labandeira C. C., Rust J., Frankenhäuser H. & Wilde V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. PLoS ONE 7(7): e40744. https://doi.org/10.1371/journal.pone.0040744

  71. Zhang Z. Q. 2011. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Magnolia press, New Zealand, 237 pp.

  72. Zhao X. Y., Yu Y. L., Clapham M. E., Yan E., Chen J., Jarzembowski E. A., Zhao X. D. & Wang B. 2021. Early evolution of beetles regulated by the end-Permian deforestation. Elife 10: e72692. https://doi.org/10.7554/eLife.72692

  73. Zheng D. R., Chang S. C. & Wang H. 2018. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Science advances 4(9): eaat1380. https://doi.org/10.1126/sciadv.aat1380

  74. Zhu R. X., Hou Z. Q., Guo Z. T. & Wan B. 2021. Summary of “the past, present and future of the habitable Earth: development strategy of earth science”. Chinese Science Bulletin 66(35): 4485‒4490. (In Chinese).

  75. Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early–early Middle Triassic of Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 371: 136‒144. https://doi.org/10.1016/j.palaeo.2013.01.002