Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-09-10
Page range: 1-20
Abstract views: 57
PDF downloaded: 3

Exploring syrphid fauna in Niella Tanaro: a forest with high species heterogeneity supported by surrounding ancestral agro-pastoral systems

Department of Life Science and Systems Biology, University of Turin, via Accademia Albertina 13, Turin, Italy
Department of Life Science and Systems Biology, University of Turin, via Accademia Albertina 13, Turin, Italy
Independent Researcher, Ronco Biellese (BI), Italy
Department of Life Science and Systems Biology, University of Turin, via Accademia Albertina 13, Turin, Italy
Syrph the Net Pollinator conservation Indice de Biodiversité Potentielle (IBP) Hoverfly Trophic category Oak forests Biodiversity monitoring Functional diversity Traditional landscape Syrphidae

Abstract

In this study, we analyzed the hoverfly community (Diptera: Syrphidae) within the Niella Tanaro forest (southern Piedmont, Italy), a woodland area embedded in a traditional agro-silvo-pastoral landscape. This research represents the first comprehensive sampling of hoverflies in the area, with the aim of comparing species richness and functional diversity to that of two other relict oak forests (Merlino and Trino) surrounded by intensively farmed landscapes. Two complementary assessment tools were applied: Syrph the Net, which compares observed and expected species for given habitats, and the Index of Biodiversity Potential (IBP), which evaluates a forest’s capacity to support biodiversity. Niella Tanaro recorded high species richness (84 species) and the highest trophic and functional diversity among the three sites. The surrounding rural mosaic, rich in flowering plants and free from pesticide use, particularly favoured phytophagous, coprophagous, and commensal hoverflies, several of which are threatened at the European level. These results suggest the importance of semi-natural environments and traditional land-use practices in potentially supporting more heterogeneous and functionally complete insect communities, although broader studies are needed to confirm this pattern. Overall, the study confirms the high conservation value of traditional agro-ecosystems for preserving ecosystems services and functional diversity in hoverfly assemblages.

References

  1. Agnoletti M. & Rotherham I. D. 2015. Landscape and biocultural diversity. Biodiversity and Conservation 24: 3155–3165. https://doi.org/10.1007/s10531-015-1003-8

  2. Agnoletti M. & Santoro A. 2022. Agricultural heritage systems and agrobiodiversity. Biodiversity and Conservation 31: 2231–2241. https://doi.org/10.1007/s10531-022-02460-3

  3. Agresti A. 2002. Categorical Data Analysis, 2nd edn. Wiley, New York.

  4. Bagella S., Caria M. C., Farris E., Rossetti I. & Filigheddu R. 2016. Traditional land uses enhanced plant biodiversity in a Mediterranean agro-silvo-pastoral system. Plant Biosystems 150(2): 201–207.

  5. Braun-Blanquet J. 1932. Plant Sociology: The Study of Plant Communities. McGraw Hill, New York.

  6. Cadotte M. W., Carscadden K. & Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

  7. Camerano P., Terzuolo P. G. & Siniscalco C. 2009. I boschi planiziali del Piemonte. Natura Bresciana, Annali del Museo Civico di Storia Naturale 36: 185–189.

  8. Chao A., Gotelli N. J., Hsieh T. C., Sander E. L., Ma K. H., Colwell R. K. & Ellison A. M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45–67.

  9. Chytrý M. & Otýpková Z. 2003. Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science 14: 563–570.

  10. Eichhorn M. P., Paris P., Herzog F., Incoll L. D., Liagre F., Mantzanas K., Mayus M., Moreno G., Papanastasis V. P. & Pilbeam D. J., et al. 2006. Silvoarable systems in Europe, past, present and future prospects.—Agroforestry Systems 67: 29–50. https://doi.org/10.1007/s10457-005-1111-7

  11. Falcucci A., Maiorano L. & Boitani L. 2007. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology 22: 617–631. https://doi.org/10.1007/s10980-006-9056-4

  12. Fiedler K., Wrbka T. & Dullinger S. 2017. Pluralism in grassland management promotes butterfly diversity in a large Central European conservation area. Journal of Insect Conservation 21: 277–285. https://doi.org/10.1007/s10841-017-9974-2

  13. Finsinger W. & Tinner W. 2006. Holocene vegetation and land-use changes in response to climatic changes in the forelands of the southwestern Alps, Italy. Journal of Quaternary Science 21(3): 243–258.

  14. Gammelmo O. & Aarvik L. 2007. The myrmecophilus fly MicrodonmyrmicaeSchönrogge et al., 2002 (Diptera, Syrphidae) in Norway. Norwegian Journal of Entomology 54(1): 43.

  15. Hsieh T. C., Ma K. H. & Chao A. 2024. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 3.0.1. http://chao.stat.nthu.edu.tw/wordpress/software-download/

  16. Kleijn D. & Van Langevelde F. 2006. Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic and Applied Ecology 7(3): 201–214.

  17. Laliberté E., Legendre P. & Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.3.

  18. Larrieu L. & Gonin P. 2008. L’indice de biodiversité potentielle (IBP): une méthode simple et rapide pour évaluer la biodiversité potentielle des peuplements forestiers. Revue Forestiere Francaise 60(6): 727–748.

  19. Maritano U. 2020. Hoverfly (Diptera: Syrphidae) assemblage of an oak-hornbeam in the Merlino Wood Natural Reserve and implications for its conservation. Biodiversity Data Journal 8: e54243. https://doi.org/10.3897/bdj.8.e54243

  20. Maritano U. 2021.Ecological assessment of the lowland relict forest “Bosco delleSortidellaPartecipanza” in Trino (North-Western Italy), applying Diptera Syrphidae as bioindicators. Journal of Entomological and Acarological Research 53: e9617. https://doi.org/10.4081/jear.2021.9617

  21. Maritano U. 2023.Well-preserved arboreal microhabitats in a highly urbanized landscape can support populations of specialized saproxylic hoverflies (Diptera: Syrphidae). Fragmenta Entomologica 55(2): 181–184. https://doi.org/10.13133/2284-4880/1501

  22. Maritano U. & Sommaggio D. 2020. Hoverfly diversity in Mareschi alluvial alder forest (Piedmont, Italy), and “Syrph the Net” ecological analysis (Diptera: Syrphidae). Fragmenta Entomologica 52: 101–112. https://doi.org/10.13133/2284-4880/417

  23. Maritano U., Bianco L. & Sommaggio D. 2024a. Not all woods are equal: local, rather than landscape, factors are important to conserve a xylosaprophagous hoverfly. Journal of Insect Conservation 28(4): 877–887. https://doi.org/10.1007/s10841-024-00610-2

  24. Maritano U., Bianco L. & Torta S. 2024b. New observations on rare and threatened saproxylic hoverflies in North-Western Italy with ecological notes. Biodiversity Data Journal 12: e127968. https://doi.org/10.3897/BDJ.12.e127968

  25. Montoya A. L., Parra J. L. & Wolff M. 2021. Structure and diversity of hoverflies (Diptera: Syrphidae) in northwestern Colombian Paramos: towards the identification of bioindicator species in the Tropical Andes. Journal of Insect Conservation 25: 809–828. https://doi.org/10.1007/s10841-021-00346-3

  26. Perone P., Meregalli M. & Cerrato C. 2022. Saproxylic weevils and edaphic beetles as indicators of environmental quality of relict forests in Piedmont lowlands. FragmentaEntomologica 54(2): 283–296. https://doi.org/10.13133/2284-4880/582

  27. Preradović J., Andrić A., Radenković S., Zorić L. Š., Pérez-Bañón C., Campoy A. & Vujić A. 2018. Pupal stages of three species of the phytophagous genus MerodonMeigen (Diptera: Syrphidae). Zootaxa 4420(2): 229–242. https://doi.org/10.11646/zootaxa.4420.2.5

  28. Proesmans W., Felten E., Laurent E., Albrecht M., Cyrille N., Labonté A., Maurer C., Paxton R., Schweiger O., Szentgyörgyi H. & Vanbergen A. J. 2024. Urbanisation and agricultural intensification modulate plant—pollinator network structure and robustness. Functional Ecology 38(3): 628–641.

  29. QGIS.org 2024. QGIS Geographic Information System. QGIS Association. Available from: http://www.qgis.org

  30. R Core Team 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/

  31. Roswell M., Dushoff J. & Winfree R. 2021. A conceptual guide to measuring species diversity. Oikos 130: 321–338. https://doi.org/10.1111/oik.07202

  32. Rotheray G. E. 1991. Larval stages of 17 rare and poorly known British hoverflies (Diptera: Syrphidae). Journalof Natural History 25(4): 945–969. https://doi.org/10.1080/00222939100770621

  33. Rotheray E. L., Bussière L. F., Moore P., Bergstrom L. & Goulson D. 2014. Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae). Journal of Insect Conservation18: 179–188. https://doi.org/10.1007/s10841-014-9627-7

  34. Satta A., Lezzeri M., Brundu G., Floris I., Palmieri N., Pantaleoni R.A., Theodorou P. & Pusceddu M. 2024. How seasonality, semi-natural habitat cover and compositional landscape heterogeneity affect pollen collection and development of Apis mellifera colonies in Mediterranean agro-sylvo-pastoral systems. Landscape Ecology 39: 26. https://doi.org/10.1007/s10980-024-01826-y

  35. Schneider R. 1985. Palynologic research in the Southern and Southeastern Alps between Torino and Trieste. DissertazioniBotaniche 87: 83–103.

  36. Sommaggio D. 1999. Syrphidae: can they be used as environmental bioindicators? Agriculture, Ecosystems & Environment 74(1–3): 343–356.

  37. Sommaggio D. & Burgio G. 2014. The use of Syrphidae (Diptera) as functional bioindicator to compare vineyards with different managements. Bullettin ofInsectology 67: 147–156.

  38. Speight M. C. D. 2012. The Syrph the Net of European Syrphidae (Diptera). Quadernidella Stazionedi Ecologia, Civico Museo di Storia Naturaledi Ferrara 20: 23–44.

  39. Speight M. C. D. 2017. The Syrph the Net database of European Syrphidae (Diptera), past, present and future. Syrph the Net, Vol. 96, 19 pp., Syrph the Net Publications, Dublin.

  40. Speight M. C. D. 2020. Species accounts of European Syrphidae, 2020. Syrph the Net, Vol. 104, 314 pp., Syrph the Net Publications, Dublin.

  41. Speight M. C. D., Castella E. & Sarthou J.-P. 2020. StN 2020. In: Speight M.C.D., Castella E., Sarthou J.-P. & Vanappelghem C. (eds), Syrph the Net on CD, Issue 12. Syrph the Net Publications, Dublin. ISSN 1649-1917.

  42. Storkey J., Brown M. J., Carvell C., Dicks L. V. & Senapathi D. 2020. Wild pollinators in arable habitats: trends, threats and opportunities. In: The Changing Status of Arable Habitats in Europe: A Nature Conservation Review, pp. 187–201. https://doi.org/10.1007/978-3-030-59875-4_13

  43. Vujić A., Gilbert F., Flinn G., Englefield E., Varga Z., Ferreira C. C., Eggert F., Woolcock S., Böhm M. & Vbra et al. 2022. Pollinators on the edge: our European hoverflies. The European Red List of Hoverflies, European Commission, Brussels, 108 pp. [https://wikis.ec.europa.eu/download/attachments/23462140/European%20Red%20List%20of%20Hoverflies.pdf]

  44. Zou Y., Bianchi F. J., Jauker F., Xiao H., Chen J., CresswellJ., Luo S., Huang J., Deng X., Hou L. & van der Werf W. 2017. Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agriculture, ecosystems & environment 246: 109–116.