Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-11-05
Page range: 15-33
Abstract views: 91
PDF downloaded: 2

Subterranean biodiversity in the largest limestone cave of the Amazon: factors shaping terrestrial invertebrate diversity across sampling scales

Universidade Federal de Lavras, Instituto de Ciências Naturais, Departamento de Ecologia e Conservação, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, MG, Brasil
Universidade Federal de Lavras, Instituto de Ciências Naturais, Departamento de Ecologia e Conservação, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, MG, Brasil
Universidade Federal de Lavras, Instituto de Ciências Naturais, Departamento de Ecologia e Conservação, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, MG, Brasil
Fauna similarity Habitat Heterogeneity communities

Abstract

This study evaluated the influence of substrate diversity on the distribution of cave floor invertebrates within the largest limestone cave in the Amazon, using substrate variation as a proxy for microhabitat heterogeneity. Sampling was conducted at two spatial scales: larger sectors (10x3 m) and smaller quadrats (1x1 m) to assess faunal responses across different scales. We tested the hypothesis that floor substrate variation, measured as total substrate diversity, shelter and organic debris diversity, microclimatic conditions (temperature and humidity), and distance from the cave entrance, affects cave invertebrates’ composition, richness, and taxonomic distinctness. A total of 101 species were recorded, with 101 species observed in the sectors and 67 in the quadrats. The richest taxonomic groups included Araneae (11 species), Diplopoda (11), Acari (9), Coleoptera (8), Diptera (8), Hymenoptera (8), and Isopoda (7). Ten species were classified as troglobites. Faunal similarity was low (less than 20%), indicating a high turnover across the cave’s microhabitats. Substrate diversity and distance from the entrance were the main factors driving faunal dissimilarity. The number of non-troglobitic species decreased with increasing distance from the cave entrance, reflecting the reduced availability of organic debris and shelters in deeper zones. Non-troglobitic taxonomic distinctness was positively associated with substrate diversity within quadrats. In contrast, variations in troglobitic species composition were primarily determined by distance from the entrance. Entrance zones, characterized by greater habitat heterogeneity and higher organic matter input, supported a larger number of species. Non-troglobite taxonomic distinctness responded positively to substrate diversity within the quadrats. Distance from the entrance determines variations in the troglobite species composition. Areas near the entrance had a greater variety of habitats and a higher supply of organic matter, which enables them to support a greater number of species. This study underscores the importance of conserving and managing cave ecosystems with particular attention to substrate and microhabitat diversity at multiple spatial scales. Understanding these ecological dynamics is critical for identifying biodiversity patterns and developing effective conservation strategies.

References

  1. Anderson M. J., Gorley R. N. & Clarke K. R. 2008. Permanova + for primer: a guide to software and statistical methods. PRIMER-E, Plymouth. Available from: https://www.researchgate.net/publication/285237419_PERMANOVA_for_primer_Guide_to_software_and_statistical_methods (accessed on 21/10/2025)

  2. Auler A., Piló L., Parker C., Senko J., Sasowsky I. & Barton, H. 2014. Hypogene cave patterns in iron ore caves: convergence of forms or processes? In: Klimchouk, A.; Sasowsky, I. (Eds.). Hypogene cave morphologies. Karst Waters Institute Special Publication, 18.Canedoli C., Ficetola G. F., Corengia D., Tognini P., Ferrario A. & Padoa-Schioppa E. 2022. Integrating landscape ecology and the assessment of ecosystem services in the study of karst areas. Landscape Ecology 37: 1–19.

  3. Cardoso R. C., Ferreira R. L. & Souza-Silva M. 2021. Priorities for cave fauna conservation in the Iuiú karst landscape, northeastern Brazil: a threatened spot of troglobitic species diversity. Biodiversity and Conservation 30(5): 1433–1455. https://doi.org/10.1007/s10531-021-02151-5

  4. Cardoso R. C., Ferreira R. L. & Souza-Silva M. 2022. Multi-spatial analysis on cave ecosystems to predict the diversity of subterranean invertebrates. Basic and Applied Ecology 65: 111–122. https://doi.org/10.1016/j.baae.2022.11.007

  5. Clarke K. R., Gorley R. N., Somerfield P. J. & Warwick R. M. 2014. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. PRIMER-E, Plymouth, 260 pp. Available from: https://www.researchgate.net/publication/264543450_Change_in_Marine_Communities_An_Approach_to_Statistical_Analysis (accessed on 21/10/2025)

  6. Clarke K. R., Somerfield P. J. & Gorley R. N. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366(1–2): 56–69. https://doi.org/10.1016/j.jembe.2008.07.009

  7. Culver D. C. & Pipan T. 2019. The biology of caves and other subterranean habitats. Oxford University Press, Oxford, 336 pp.

  8. Deharveng L., Bedos A., Pipan T. & Culver D. C. 2024. Global Subterranean Biodiversity: A Unique Pattern. Diversity 16: 157. https://doi.org/10.3390/d16030157

  9. Fearnside P. M. 1999. Biodiversity as an environmental service in Brazil's Amazonian forests: risks, value and conservation. Environmental Conservation 26(4): 305–321. Available from: https://philip.inpa.gov.br/publ_livres/preprints/1999/riberao-ec4.pdf (accessed on 21/10/2025)

  10. Ferreira R. L. & Horta L. C. S. 2001. Natural and human impacts on invertebrate communities in Brazilian caves. Revista Brasileira de Biologia 61: 7–17. https://doi.org/10.1590/S0034-71082001000100003

  11. Fox J. & Weisberg S. 2019. An R companion to applied regression. 3rd ed. Sage, Thousand Oaks, 608 pp.

  12. Freire L. C., Lima J. S., Silva E. V., Veríssimo C. U. V. & Pinheiro R. V. L. 2013. Estudo da paisagem em patrimônios espeleológicos: considerações sobre o carste não-carbonático da província espeleológica Altamira-Itaituba (Pa). In: Anais do 13º Simpósio de Geologia da Amazônia, Belém. SBG. Available from: http://13sga.sbg-no.org.br/index.php?option=com_content&view=article&id=31&Itemid=37 (Accessed 12 Apr. 2014)

  13. Fuhlendorf S. D. & Smeins F. E. 1996. Spatial scale influence on long-term temporal patterns of a semi-arid grassland. Landscape Ecology 11: 107–113. https://doi.org/10.1007/BF02093742

  14. Furtado Oliveira L., Lopes Ferreira R., Rodriguez Fernández J. I. & Souza Silva M. 2022. Recreational caving impacts of visitors in a high-altitude cave in Bolivian Andes: main effects on microhabitat structure and faunal distribution. International Journal of Speleology 51(2): 93–103. https://doi.org/10.5038/1827-806X.51.2.2418

  15. Gadelha E. M. & Alecrim J. D. 2006. Turismo: impactos nos aspectos geomorfológicos da área de proteção ambiental Presidente Figueiredo Caverna do Maroaga-AM. Caderno Virtual de Turismo 6(2): 19–24.

  16. Galo J. B., Cardoso G. M. & Ferreira R. L. 2025. In the depths of the Amazon rainforest: a new troglobitic species of Circoniscus (Isopoda: Scleropactidae) from Brazil. Nauplius 33: e20250545. https://doi.org/10.1590/2358-2936e20250545

  17. Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.6. Available from: https://CRAN.R-project.org/package=DHARMa (accessed on 21/10/2025)

  18. Romero-Rincon J., Bouzan R. S. & Ferreira R. L. 2025. The first troglobitic species of the extraordinary genus Pandirodesmus Silvestri, 1932, from the Brazilian Amazon (Polydesmida, Chelodesmidae, Pandirodesmini). Zootaxa 5673(4): 571–584.

  19. Laurance W. F., Cochrane M. A., Bergen S., Fearnside P. M., Delamônica P., Barber C. S. D’Angelo & T. Fernandes. 2001. The future of the Brazilian Amazon. Science 291(5503): 438–439. https://doi.org/10.1126/science.291.5503.4

  20. Magurran A. E. & McGill B. J. 2011. Biological diversity. In: Frontiers in measurement and assessment. Oxford University Press, Oxford. ISBN: 9780199580675

  21. Mammola S. 2019. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42(7): 1331–1351. https://doi.org/10.1111/ecog.03905

  22. Mammola S. & Leroy B. 2018. Applying species distribution models to caves and other subterranean habitats. Ecography 41(7): 1194–1208. https://doi.org/10.1111/ecog.03464

  23. Mammola S., Giachino P. M., Dutto M., Montagna M., Sabella G. & Della Casa S. 2015. Seasonal dynamics and micro-climatic preference of two Alpine endemic hypogean beetles. International Journal of Speleology 44(3): 3. https://doi.org/10.5038/1827-806X.44.3.3

  24. Mammola S., Giachino P. M., Dutto M., Montagna M., Sabella G. & Della Casa S. 2016. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). The Science of Nature 103(11): 1–24. https://doi.org/10.1007/s00114-016-1413-9

  25. Mammola S., Piano E., Giachino P. M. & Isaia M. 2017. An ecological survey of the invertebrate community at the epigean/hypogean interface. Subterranean Biology 24: 27–52. https://doi.org/10.3897/subtbiol.24.21585

  26. Mendes-Rabelo L. M., Souza-Silva M. & Ferreira R. L. 2021. Epigean and hypogean drivers of Neotropical subterranean communities. Journal of Biogeography 48(3): 662–675. https://doi.org/10.1111/jbi.14031

  27. Moore J. C., Berlow E. L., Coleman D. C., De Ruiter P. C., Dong Q., Hastings A., Wall D. H. et al. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7(7): 584–600. https://doi.org/10.1111/j.1461-0248.2004.00606.x

  28. Nicolosi G., Mammola S., Costanzo S., Sabella G., Cirrincione R., Signorello G. & Isaia M. 2021. Microhabitat selection of a Sicilian subterranean woodlouse and its implications for cave management. International Journal of Speleology 50(1): 5. https://doi.org/10.5038/1827-806X.50.1.2370

  29. Novak T., Perc M., Lipovšek S. & Janžekovič F. 2012. Duality of terrestrial subterranean fauna. International Journal of Speleology 41(2): 5. https://doi.org/10.5038/1827-806X.41.2.5

  30. O’Neill R. V., DeAngelis D. L., Waide J. B. & Allen T. F. H. 1986. A hierarchical concept of ecosystems. Princeton University Press, New Jersey. Monographs in Population Biology 23: 253 pages.

  31. Pacheco G. S., Souza Silva M., Cano E. & Ferreira R. L. 2020. The role of microhabitats in structuring cave invertebrate communities in Guatemala. International Journal of Speleology 49(2): 8. https://doi.org/10.5038/1827-806X.49.2.2333

  32. Pellegrini T. G., Sales L. P., Aguiar P. & Ferreira R. L. 2016. Linking spatial scale dependence of land-use descriptors and invertebrate cave community composition. Subterranean Biology 18: 17–38. https://doi.org/10.3897/subtbiol.18.8335

  33. Prous X., Ferreira R. L. & Martins R. P. 2004. Ecotone delimitation: epigean–hypogean transition in cave ecosystems. Austral Ecology 29(4): 374–382. https://doi.org/10.1111/j.1442-9993.2004.01373.x

  34. Reis-Venâncio P. C., Ferreira R. L. & Souza-Silva M. 2024. From the front door to the basement: invertebrate communities' structure as a proxy for determining cave zonation in Neotropics. Biotropica 56(4): e13356. https://doi.org/10.1111/btp.13356

  35. Reis-Venâncio P. C., Rabelo L. M., Pellegrini T. G. & Ferreira R. L. 2022. From light to darkness: the duality of influence of habitat heterogeneity on Neotropical terrestrial cave invertebrate communities. Studies on Neotropical Fauna and Environment 1–10. https://doi.org/10.1080/01650521.2022.2095832

  36. Rocha Melo, L. M., Ferreira, R. L. & Silva, M. S. 2025. A review of the factors influencing invertebrate community structure in subterranean habitats. Community Ecology 26: 449–463. https://doi.org/10.1007/s42974-025-00243-8

  37. Schneider K., Christman M. C. & Fagan W. F. 2011. The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92(3): 765–776. https://doi.org/10.1890/10-0157.1

  38. Simões M. H., Souza-Silva M. & Ferreira R. L. 2015. Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterranean Biology 16: 103. https://doi.org/10.3897/subtbiol.16.5470

  39. Simon K. S. & Benfield E. F. 2001. Leaf and wood breakdown in cave streams. Journal of the North American Benthological Society 20(4): 550–563. https://doi.org/10.2307/1468087

  40. Somerfield P. J. & Clarke K. R. 2013. Inverse analysis in non-parametric multivariate analyses: distinguishing groups of associated species which covary coherently across samples. Journal of Experimental Marine Biology and Ecology 449: 261–273. https://doi.org/10.1016/j.jembe.2013.10.002

  41. Sousa-Barros J. & Bernard E. 2023. Big family, warm home, and lots of friends: Pteronotus large colonies affect species richness and occupation inside caves. Biotropica 55(3): 605–616. https://doi.org/10.1111/btp.13211

  42. Sousa-Barros J., Bernard E. & Ferreira R. L. 2020. Ecological preferences of Neotropical cave bats in roost site selection and their implications for conservation. Basic and Applied Ecology 45: 31–41. https://doi.org/10.1016/j.baae.2020.03.007

  43. Souza-Filho P. W. M., Giannini T. C., Jaffé R., Giulietti A. M., Santos D. C., Nascimento Jr W. R. et al. 2019. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: a challenge for biodiversity conservation. PLoS One 14(1): e0211095. https://doi.org/10.1371/journal.pone.0211095

  44. Souza-Silva M., Bernardi L. F. O., Martins R. P. & Ferreira R. L. 2012. Transport and consumption of organic detritus in a neotropical limestone cave. Acta Carsologica 41: 139–150. https://doi.org/10.3986/ac.v41i1.54

  45. Souza-Silva M., Cerqueira R. F. V., Pellegrini T. G. & Ferreira R. L. 2021. Habitat selection of cave-restricted fauna in a new hotspot of subterranean biodiversity in Neotropics. Biodiversity and Conservation 30(14): 4223–4250. https://doi.org/10.1007/s10531-021-02302-8

  46. Souza-Silva M., Martins R. P. & Ferreira R. L. 2011. Trophic dynamics in a Neotropical limestone cave. Subterranean Biology 9: 127–138. https://doi.org/10.3897/subtbiol.9.2515

  47. Terlizzi A., Anderson M. J., Bevilacqua S., Fraschetti S., Włodarska‐Kowalczuk M. & Ellingsen K. E. 2009. Beta diversity and taxonomic sufficiency: do higher‐level taxa reflect heterogeneity in species composition? Diversity and Distributions 15(3): 450–458. https://doi.org/10.1111/j.1472-4642.2008.00551.x

  48. Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M. C., Schwager M. & Jeltsch F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x

  49. The jamovi project. 2023. jamovi (Version 2.4) [Computer Software]. Available from: https://www.jamovi.org (accessed on 21/10/2025)

  50. Tobin B. W., Hutchins B. T. & Schwartz B. F. 2013. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. International Journal of Speleology 42(3): 203–214. https://doi.org/10.5038/1827-806X.42.3.4

  51. Venarsky M. P. & Huntsman B. M. 2018. Food webs in caves, pp. 347–370. In: Moldovan O., Kováč Ľ. & Halse S. (editors). Cave Ecology. Ecological Studies, vol. 235. Springer, Cham.

  52. Wang X., Edwards R. L., Auler A. S., Cheng H., Kong X., Wang Y., Cruz F. W., Dorale J. A. & Chiang H. W. 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541(7636): 204–207. https://doi.org/10.1038/nature20787

  53. Wentworth C. K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377–392. Available from: https://www.jstor.org/stable/30063207 (accessed on 21/10/2025)

  54. Wiens J. A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397. https://doi.org/10.2307/2389612

  55. Wijayanti F. & Maryanto I. 2017. Diversity and pattern of nest preference of bat species at bat-dwelling caves in Gombong Karst, Central Java, Indonesia. Biodiversitas Journal of Biological Diversity 18(3): 864–874. https://doi.org/10.13057/biodiv/d180302

  56. Wilson S. D. 2000. Heterogeneity, diversity and scale in plant communities, pp. 53–69. In: Hutchings M. J., John E. A. & Stewart A. J. A. (editors). The ecological consequences of environmental heterogeneity. Blackwell Scientific, Oxford, UK.

  57. Zagmajster M., Malard F., Eme D., & Culver D. C 2018. Subterranean biodiversity patterns from global to regional scales, pp. 195–227. In: Cave Ecology. Springer, Cham.

  58. Zortea M., Bastos N. A. & Acioli T. C. 2015. The bat fauna of the Kararaô and Kararaô Novo caves in the area under the influence of the Belo Monte hydroelectric dam, in Pará, Brazil. Brazilian Journal of Biology 75: 168–173. https://doi.org/10.1590/1519-6984.00414BM

  59. Zuur A. F., Ieno E. N. & Elphick C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1(1): 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x