Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-08-28
Page range: 372–384
Abstract views: 258
PDF downloaded: 153

The strange holometabolan beak larva from about 100 million years old Kachin amber was physogastric and possibly wood-associated

Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
University of Yangon, Department of Zoology, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
University of Yangon, Department of Zoology, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
University of Yangon, Department of Zoology, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
Neuropteriformia Partisaniferus Myanmar amber Burmese amber convergent evolution

Abstract

The group Neuropteriformia (beetles, lacewings, etc.) is today very species-rich, but also has a good fossil record in the Mesozoic. Amber provides not only adults, but also fossil larvae; some of these fossil neuropteriformian larvae have very unusual morphologies not seen in the modern fauna. We here report an unusual new fossil neuropteriformian larva. The mouthparts form a beak. Fossil larvae with similar mouthparts are known, and it seems that this new larva is a representative of the species ?Partisaniferus edjarzembowskii. The new larva, unlike the already known ones, has a large and inflated trunk. Based on comparison with extant larvae, such an inflated trunk should be considered physogastric. The new larva is only the second case of physogastry in fossil holometabolan larvae. Also early larvae of this species are known. The strong difference between the different larval stages give reason to interpret the ontogeny hypermetamorphic. Also this phenomenon is in fact very rare in the fossil record; most earlier candidates remain assumptions without further substantiation. Physogastry in larvae is often coupled to a mode of live in confined spaces, for a fossil preserved in amber this may mean living inside wood. Feeding mode might have been predatory, but could also have been feeding on fungi.

References

  1. Ardila-Camacho, A., Machado, R.J.P. & Contreras-Ramos, A. (2021) A review of the biology of Symphrasinae (Neuroptera: Rhachiberothidae), with the description of the egg and primary larva of Plega Navás, 1928. Zoologischer Anzeiger, 294, 165–185. https://doi.org/10.1016/j.jcz.2021.08.007
  2. Arndt, E. (1993) Phylogenetische Untersuchungen larvalmorpho-logischer Merkmale der Carabidae (Insecta: Coleoptera). Stuttgarter Beiträge zur Naturkunde, Serie A, 488, 1–56.
  3. Aspöck, U. & Aspöck, H. (1999) Kamelhälse, Schlammfliegen, Ameisenlöwen. Wer sind sie? (Insecta: Neuropterida: Raphidioptera, Megaloptera, Neuroptera). Stapfia, 60, 1–34.
  4. Aspöck, U. & Aspöck, H. (2007) Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia, 20, 451–516.
  5. Aspöck, U. & Aspöck, H. (2008) Phylogenetic relevance of the genital sclerites of Neuropterida (Insecta: Holometabola). Systematic Entomology, 33, 97–127. https://doi.org/10.1111/j.1365-3113.2007.00396.x
  6. Badano, D., Engel, M.S., Basso, A., Wang, B. & Cerretti, P. (2018) Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 9, 3257. https://doi.org/10.1038/s41467-018-05484-y
  7. Badano, D., Di Giulio, A., Aspöck, H., Aspöck, U. & Cerretti, P. (2021b) Burrowing specializations in a lacewing larva (Neuroptera: Dilaridae). Zoologischer Anzeiger, 293, 247–256. https://doi.org/10.1016/j.jcz.2021.06.014
  8. Badano, D., Fratini, M., Maugeri, L., Palermo, F., Pieroni, N., Cedola, A., Haug, J.T., Weiterschan, T., Velten, J., Mei, M., Di Giulio, A. & Cerretti, P. (2021a) X-ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 46, 672–684. https://doi.org/10.1111/syen.12482
  9. Bahmer, H. & Lückmann, J. (2021) Zur Biologie und Ökologie von Stenoria analis Schaum, 1859 (Coleoptera: Meloidae) Ergebnisse einer fünfjährigen Untersuchung des Seidenbienen-Ölkäfers im Botanischen Garten Gießen. Oberhessische Naturwissenschaftliche Zeitschrift, 69, 7–57.
  10. Baranov, V.A., Wang, Y., Gašparič, R., Wedmann, S. & Haug, J.T. (2020) Eco-morphological diversity of larvae of soldier flies and their closest relatives in deep time. PeerJ, 8, e10356. https://doi.org/10.7717/peerj.10356
  11. Batelka, J., Engel, M.S. & Prokop, J. (2021) The complete life cycle of a Cretaceous beetle parasitoid. Current Biology, 31, R118–R119. https://doi.org/10.1016/j.cub.2020.12.007
  12. Beerendra, P.N., Ganguli, J. & Ganguli, R.N. (2022) Feeding efficiency of the larval stages of green lace wing, Chrysoperla zastrowi sillemi (Esben-Petersen) (Chrysopidae: Neuroptera) fed on eggs of diamond back moth of cabbage, Plutella xylostella (L.). The Pharma Innovation Journal, SP-11 (8) 2111–2113.
  13. Beutel, R.G., Friedrich, F. & Aspöck, U. (2010) The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zoological Journal of the Linnean Society, 158, 533–562. https://doi.org/10.1111/j.1096-3642.2009.00560.x
  14. Body, M., Burlat, V. & Giron, D. (2015) Hypermetamorphosis in a leaf-miner allows insects to cope with a confined nutritional space. Arthropod-Plant Interactions, 9, 75–84. https://doi.org/10.1007/s11829-014-9349-5
  15. Bologna, M.A. & Di Giulio, A. (2011) Biological and morphological adaptations in the pre-imaginal phases of the beetle family Meloidae. Atti Accademia Nazionale Italiana di Entomologia, 59, 141–152.
  16. Brito, R., Goncalves, G.L., Vargas, H.A. & Moreira, G.R. (2013) A new Brazilian Passiflora leafminer: Spinivalva gaucha, gen. n., sp. n. (Lepidoptera, Gracillariidae, Gracillariinae), the first gracillariid without a sap-feeding instar. ZooKeys, 291, 1–26. https://doi.org/10.3897/zookeys.291.4910
  17. Brues, C.T. (1905) Notes on the life history of the Stylopidae. The Biological Bulletin, 8, 290–295. https://doi.org/10.2307/1535804
  18. Burakowski, B. (1989) Hypermetamorphosis of Rhacopus attenuatus (Maeklin) (Coleoptera, Eucnemidae). Annales Zoologici, 42 (5), 165–180.
  19. Capelle, K.J. (1966) Observations on the life history of Ogcodes rufoabdominalis in Northern Utah (Diptera: Acroceridae). Journal of the Kansas Entomological Society, 39, 641–649.
  20. Chang, Y., Fang, H., Shih, C., Ren, D. & Wang, Y. (2018); Reevaluation of the subfamily Cretanallachiinae Makarkin, 2017 (Insecta: Neuroptera) from Upper Cretaceous Myanmar amber. Cretaceous Research, 84, 533–539. https://doi.org/10.1016/j.cretres.2017.10.028
  21. Chaudhuri, P.K. & Mazumdar, A. (2000) On the biology of Halictophagus australensis Perkins, 1905 from India (Strepsiptera, Halictophagidae). Deutsche Entomologische Zeitschrift, 47 (2), 203–215. https://doi.org/10.1002/dez.200000022
  22. Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  23. Darling, D.C. & Miller, T.D. (1991) Life history and larval morphology of Chrysolampus (Hymenoptera: Chalcidoidea: Chrysolampinae) in western North America. Canadian Journal of Zoology, 69, 2168–2177. https://doi.org/10.1139/z91-303
  24. Davis, D.R. & De Prins, J. (2011) Systematics and biology of the new genus Macrosaccus with descriptions of two new species (Lepidoptera, Gracillariidae). ZooKeys, 98, 29–82. https://doi.org/10.3897/zookeys.98.925
  25. Davis, D.R., Farfán, J., Cerdeña, J., Huanca-Mamani, W., Vargas, H.A., Vargas-Ortiz, M., Gonçalves, G.L. & Moreira, G.R.P. (2020) Adenogasteria leguminivora Davis & Vargas gen. et sp. nov.(Lepidoptera: Gracillariidae): a new seed‐feeding micromoth associated with Fabaceae in Peru and Chile. Austral Entomology, 59 (1), 37–51. https://doi.org/10.1111/aen.12439
  26. Davis, D.R. & Wagner, D. (2011) Biology and systematics of the New World Phyllocnistis Zeller leafminers of the avocado genus Persea (Lepidoptera, Gracillariidae). ZooKeys, 97, 39–73. https://doi.org/10.3897/zookeys.97.753
  27. Di Giulio, A., Aberlenc, H.P., Taglianti, A.V. & Bologna, M.A. (2003) Definition and description of larval types of Cyaneolytta (Coleoptera Meloidae) and new records of their phoretic association with Carabidae (Coleoptera). Tropical Zoology, 16 (2), 165–187. https://doi.org/10.1080/03946975.2003.10531193
  28. Engel, M.S., Barden, P., Riccio, M.L. & Grimaldi, D.A. (2016) Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Current Biology, 26, 522–530. https://doi.org/10.1016/j.cub.2015.12.061
  29. Fischer, T.C. (2021) In search for the unlikely: Leaf-mining caterpillars (Gracillariidae, Lepidoptera) from Upper Cretaceous and Eocene ambers. Zitteliana, 95, 135–145. https://doi.org/10.3897/zitteliana.95.63317
  30. Fitzgerald, T.D. (1973) Coexistence of three species of bark-mining Marmara (Lepidoptera: Gracillariidae) on green ash and descriptions of new species. Annals of the Entomological Society of America, 66, 457–464. https://doi.org/10.1093/aesa/66.2.457
  31. Fitzgerald, T.D. & Simeone, J.B. (1971a) Description of the immature stages of the sap feeder Marmara fraxinicola (Lepidoptera: Gracillariidae). Annals of the Entomological Society of America, 64, 765–770. https://doi.org/10.1093/aesa/64.4.765
  32. Fitzgerald, T.D. & Simeone, J.B. (1971b) Serpentine miner Marmara fraxinicola (Lepidoptera: Gracillariidae) in stems of white ash. Annals of the Entomological Society of America, 64, 770–773. https://doi.org/10.1093/aesa/64.4.770
  33. Gauweiler, J., Haug, C., Müller, P. & Haug, J.T. (2022) Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity, 15, 45–59. https://doi.org/10.18476/pale.v15.a3
  34. Gepp, J. (1984) Erforschungsstand der Neuropteren-Larven der Erde (mit einem Schlüssel zur Larvaldiagnose der Familien, einer Übersicht von 340 beschriebenen Larven und 600 Literaturzitaten). In: Gepp, J., Aspöck, H. & Hölzel, H. (Eds), Progress in World’s Neuropterology. Proceedings of the 1st International Symposium on Neuropterology (22–26 September 1980, Graz, Austria), 183–239; Graz, Austria (privately printed).
  35. Grebennikov, V.V. (2004) Grub-like larvae of Neuroptera (Insecta): a morphological review of the families Ithonidae and Polystoechotidae and a description of Oliarces clara. European Journal of Entomology, 101, 409–417. https://doi.org/10.14411/eje.2004.056
  36. Grimaldi, D.A. & Engel, M.S. (2005) Evolution of the insects. Cambridge University Press, Cambridge, UK, 772 pp.
  37. Guillén, M. & Heraty, J.M. (2004) Instar differences in Marmara gulosa (Lepidoptera: Gracillariidae). Annals of the Entomological Society of America, 97, 1227–1232. https://doi.org/10.1603/0013-8746(2004)097[1227:IDIMGL]2.0.CO;2
  38. Gumovsky, A.V. (2006) The biology and morphology of Entedon sylvestris, a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae). Journal of Hymenoptera Research, 15, 232–250.
  39. Gurney, A.B. (1947) Notes on Dilaridae and Berothidae, with special reference to the immature stages of the Nearctic genera (Neuroptera). Psyche, 54, 145–169. https://doi.org/10.1155/1947/78317
  40. Haug, C., Haug, G.T., Zippel, A., van der Wal, S. & Haug, J.T. (2021c) The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber. Palaeoentomology, 4 (4), 390–404. https://doi.org/10.11646/palaeoentomology.4.4.14
  41. Haug, C., Zippel, A., Hassenbach, C., Haug, G.T. & Haug, J.T. (2022a) A split-footed lacewing larva from about 100-million-year-old amber indicates a now extinct hunting strategy for neuropterans. Bulletin of Geosciences, 97, 453–464.
  42. https://doi.org/10.3140/bull.geosci.1861
  43. Haug, G.T., Haug, C., Pazinato, P.G., Braig, F., Perrichot, V., Gröhn, C., Müller, P. & Haug, J.T. (2020d) The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica, 23 (2), a39.
  44. https://doi.org/10.26879/1029
  45. Haug, J.T. (2019) Categories of developmental biology: Examples of ambiguities and how to deal with them. In: Fusco, G. (Ed.), Perspectives on evolutionary and developmental biology. Essays for Alessandro Minelli, Festschrift 2, Padova University Press, Padova, 93–102.
  46. Haug, J.T., Baranov, V., Müller, P. & Haug, C. (2021a) New extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Scientific Reports, 11, 20432.
  47. https://doi.org/10.1038/s41598-021-99480-w
  48. Haug, J.T., Baranov, V., Schädel, M., Müller, P., Gröhn, P. & Haug, C. (2020e) Challenges for understanding lacewings: how to deal with the incomplete data from extant and fossil larvae of Nevrorthidae? (Neuroptera). Fragmenta Entomologica, 52, 137–167.
  49. https://doi.org/10.13133/2284-4880/472
  50. Haug, J.T., Engel, M.S., Mendes dos Santos, P., Haug, G.T., Müller, P. & Haug, C. (2022b) Declining morphological diversity in snakefly larvae during last 100 million years. Paläontologische Zeitschrift, 96, 749–780.
  51. https://doi.org/10.1007/s12542-022-00609-7
  52. Haug, J.T. & Haug, C. (2022a) Another strange holometabolan larva from Kachin amber—the enigma of the beak larva (Neuropteriformia). Palaeoentomology, 5 (3), 276–284.
  53. https://doi.org/10.11646/palaeoentomology.5.3.11
  54. Haug, J.T. & Haug, C. (2022b) 100 million-year-old straight-jawed lacewing larvae with enormously inflated trunks represent the oldest cases of extreme physogastry in insects. Scientific Reports, 12, 12760.
  55. https://doi.org/10.1038/s41598-022-16698-y
  56. Haug, J.T. & Haug, C. (2023) Oldest record of a dustywing-type larva in about 100-million-year-old amber. Palaeodiversity, 16, 141–150.
  57. https://doi.org/10.18476/pale.v16.a7
  58. Haug, J.T., Haug, G.T. & Haug, C. (2023) Reconstructing the history of lacewing diversification: shape heterochrony and core tree as tools for reconstructing evolutionary processes. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 308, 1–21.
  59. https://doi.org/10.1127/njgpa/2023/1126
  60. Haug, J.T., Haug, G.T., Zippel, A., van der Wal, S., Müller, P., Gröhn, C., Wunderlich, J., Hoffeins, C., Hoffeins, H.-W. & Haug, C. (2021b) Changes in the morphological diversity of larvae of lance lacewings, mantis lacewings and their closer relatives over 100 million years. Insects, 12, art. 860.
  61. https://doi.org/10.3390/insects12100860
  62. Haug, J.T., Müller, P. & Haug, C. (2018) The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters, 4, 31.
  63. https://doi.org/10.1186/s40851-018-0116-9
  64. Haug, J.T., Müller, P. & Haug, C. (2019a) A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters, 5, 29.
  65. https://doi.org/10.1186/s40851-019-0144-0
  66. Haug, J.T., Müller, P. & Haug, C. (2019b) A 100-million-year old slim insectan predator with massive venom-injecting stylets - a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences, 94, 431–440.
  67. https://doi.org/10.3140/bull.geosci.1753
  68. Haug, J.T., Müller, P. & Haug, C. (2020b) A 100 million-year-old snake-fly larva with an unusually large antenna. Bulletin of Geosciences, 95, 167–177.
  69. https://doi.org/10.3140/bull.geosci.1757
  70. Haug, J.T., Pazinato, P.G., Haug, G.T. & Haug, C. (2020a) Yet another unusual new type of lacewing larva preserved in 100-million-year old amber from Myanmar. Rivista Italiana di Paleontologia e Stratigrafia, 126, 821–832.
  71. https://doi.org/10.13130/2039-4942/14439
  72. Haug, J.T., Schädel, M., Baranov, V.A. & Haug, C. (2020c) An unusual 100-million-year old holometabolan larva with a piercing mouth cone. PeerJ, 8, e8661.
  73. https://doi.org/10.7717/peerj.8661
  74. Haug, J.T., van der Wal, S., Gröhn, C., Hoffeins, C., Hoffeins, H.-W. & Haug, C. (2022c) Diversity and fossil record of larvae of three groups of lacewings with unusual ecology and functional morphology: Ithonidae, Coniopterygidae and Sisyridae. Palaeontologia Electronica, 25, a14.
  75. https://doi.org/10.26879/1212
  76. Heraty, J.M. & Darling, D.C. (1984) Comparative morphology of the planidial larvae of Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea). Systematic Entomology, 9, 309–328.
  77. https://doi.org/10.1111/j.1365-3113.1984.tb00056.x
  78. Huerta, C., Martínez, I. & García-Hernández, M. (2010) Preimaginal development of Onthophagus incensus Say, 1835 (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 64, 365–371.
  79. https://doi.org/10.1649/0010-065X-64.4.365
  80. Jandausch, K., Pohl, H., Aspöck, U., Winterton. S.L. & Beutel, R.G. (2018) Morphology of the primary larva of Mantispa aphavexelte Aspöck & Aspöck, 1994 (Neuroptera: Mantispidae) and phylogenetic implications to the order of Neuroptera. Arthropod Systematics & Phylogeny, 76, 529–560.
  81. https://doi.org/10.3897/asp.76.e31967
  82. Jiang, X., Shear, W. A., Hennen, D.A., Chen, H. & Xie, Z. (2019) One hundred million years of stasis: Siphonophora hui sp. nov., the first Mesozoic sucking millipede (Diplopoda: Siphonophorida) from mid-Cretaceous Burmese amber. Cretaceous Research, 97, 34–39. https://doi.org/10.1016/j.cretres.2019.01.011
  83. Jordan, M.P., Langmaid, J.R. & Doorenweerd, C. (2016) Morphological difference between upperside and underside leaf-mining larvae of Phyllocnistis unipunctella (Stephens, 1834) (Lep. Gracillariidae) and its changing phenology. The Entomologist’s Record and Journal of Variation, 128, 121–127.
  84. Kathirithamby, J. (1989) Review of the order Strepsiptera. Systematic Entomology, 14, 41–92. https://doi.org/10.1111/j.1365-3113.1989.tb00265.x
  85. Kathirithamby, J. (2009) Host-parasitoid associations in Strepsiptera. Annual Review of Entomology, 54, 227–249. https://doi.org/10.1146/annurev.ento.54.110807.090525
  86. Komárek, S. (2003) Mimicry, aposematism and related phenomena. Mimetism in nature and the history of its study. Lincom Europa, München, 167 pp.
  87. Komatsu, T. (2014) Larvae of the Japanese termitophilous predator Isoscelipteron okamotonis (Neuroptera, Berothidae) use their mandibles and silk web to prey on termites. Insectes Sociaux, 61, 203–205. https://doi.org/10.1007/s00040-014-0346-6
  88. Labandeira, C.C., Yang, Q., Santiago-Blay, J.A., Hotton, C.L., Monteiro, A., Wang, Y.J.., Goreva, Y., Shih, C.K., Siljeström, S., Rose, T.R., Dilcher, D.L. & Ren, D. (2016) The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society of London B, 283, 20152893. https://doi.org/10.1098/rspb.2015.2893
  89. Lawrence, J.F. (2016) 17. Dascilloidea Guérin-Méneville, 1843. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Handbook of Zoology. Arthropoda: Insecta. Part 38. Vol. 1. Coleoptera, Beetles. Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). 2nd edn. De Gruyter, Berlin, pp. 531–542. https://doi.org/10.1515/9783110373929-020
  90. Lawrence, J.F., Falin, Z.H. & Ślipiński, A. (2011) 11.8. Ripiphoridae Gemminger and Harold, 1870 (Gerstaecker, 1855). In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F (Eds), Handbook of Zoology. Arthropoda: Insecta. Part 38. Vol. 2. Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). De Gruyter, Berlin, pp. 538–548. https://doi.org/10.1515/9783110911213.538
  91. Liu, X., Shi, G., Xia, F., Lu, X., Wang, B. & Engel, M.S. (2018) Liverwort mimesis in a Cretaceous lacewing larva. Current Biology, 28, 1475–1481. https://doi.org/10.1016/j.cub.2018.03.060
  92. Liu, X., Zhang, W., Winterton, S.L., Breitkreuz, L.C. & Engel, M.S. (2016) Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology, 26, 1590–1594. https://doi.org/10.1016/j.cub.2016.04.039
  93. Lu, X., Wang, B. & Liu, X. (2021) New Cretaceous antlion-like lacewings promote a phylogenetic reappraisal of the extinct myrmeleontoid family Babinskaiidae. Scientific Reports, 11, 16431. https://doi.org/10.1038/s41598-021-95946-z
  94. Luo, C., Liu, H. & Jarzembowski, E.A. (2022) High morphological disparity of neuropteran larvae during the Cretaceous revealed by a new large species. Geological Magazine, 159, 954–962. https://doi.org/10.1017/S0016756822000176
  95. Maia-Silva, C., Hrncir, M., Koedam, D., Machado, R.J.P. & Imperatriz-Fonseca, V.L. (2013) Out with the garbage: the parasitic strategy of the mantisfly Plega hagenella mass-infesting colonies of the eusocial bee Melipona subnitida in northeastern Brazil. Naturwissenschaften, 100, 101–105. https://doi.org/10.1007/s00114-012-0994-1
  96. Malicky, H. (1984) Ein Beitrag zur Autökologie und Bionomie der aquatischen Netzflüglergattung Neurorthus (Insecta, Neuroptera, Neurorthidae). Archiv für Hydrobiologie, 101, 231–246.
  97. Manfredini, F., Giusti, F., Beani, L. & Dallai, R. (2007) Developmental strategy of the endoparasite Xenos vesparum (Strepsiptera, Insecta): host invasion and elusion of its defense reactions. Journal of Morphology, 268, 588–601. https://doi.org/10.1002/jmor.10540
  98. Mergelsberg, O. (1934) Über den Begriff der Physogastrie. Zoologischer Anzeiger, 106, 97–105.
  99. Minter, L.R. (1990) A comparison of the eggs and first-instar larvae of Mucroberotha vesicaria Tjeder with those of other species in the families Berothidae and Mantispidae (Insecta: Neuroptera). In: Mansell, M.W. & Aspöck, H. (Eds), Proceedings of the Third International Symposium on Neuropterology. Pretoria, South Africa (South African Department of Agricultural Development), Kruger National Park, South Africa, 3–4 February 1988, 115–129.
  100. Möller, A., Minter, L.R. & Olivier, P.A.S. (2006) Larval morphology of Podallea vasseana Navás and Podallea manselli Aspöck & Aspöck from South Africa (Neuroptera: Berothidae). African Entomology, 14, 1–12.
  101. Monserrat, V.J. (2005) Nuevos datos sobre algunas pequeñas familias de neurópteros (Insecta: Neuroptera: Nevrorthidae, Osmylidae, Sisyridae, Dilaridae). Heteropterus, Revista de Entomología, 5, 1–26.
  102. Moreira, G.R.P., Pollo, P., Brito, R., Gonçalves, G.L. & Vargas, H.A. (2018) Cactivalva nebularia, gen. et sp. nov. (Lepidoptera: Gracillariidae): a new Weinmannia leaf miner from southern Brazil. Austral Entomology, 57, 62–76. https://doi.org/10.1111/aen.12267
  103. Moritz, L., Borisova, E., Hammel, J.U., Blanke, A. & Wesener, T. (2022) A previously unknown feeding mode in millipedes and the convergence of fluid feeding across arthropods. Science Advances, 8, eabm0577. https://doi.org/10.1126/sciadv.abm0577
  104. Muafor, F.J., Gnetegha, A.A., Le Gall, P. & Levang, P. (2015) Exploitation, trade and farming of palm weevil grubs in Cameroon. vol. 178. Bogor Barat, Indonesia (CIFOR), 32 pp.
  105. Muona, J. (2010) 4.5 Eucnemidae Eschscholtz, 1829. In: Leschen, R.A.B., Beutel, R.G. & Lawrence, J.F (Eds), Handbook of Zoology. Arthropoda: Insecta. Part 38. Vol. 2. Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). De Gruyter, Berlin, pp. 61–69. https://doi.org/10.1515/9783110911213.61
  106. Muona, J. & Teräväinen, M. (2020) A re-evaluation of the Eucnemidae larval characters (Coleoptera). Papéis Avulsos de Zoologia, 60 (Special-issue), e202060(s.i.).28. https://doi.org/10.11606/1807-0205/2020.60.special-issue.28
  107. Németh, T. & Otto, R. (2016) Notes on the bionomics of Farsus dubius (Piller & Mitterpacher, 1783) (Coleoptera: Eucnemidae: Melasinae), with observations on its hypermetamorphic development. Elateridarium, 10, 133–144.
  108. Ohl, M. (2011) Aboard a spider—a complex developmental strategy fossilized in amber. Naturwissenschaften, 98, 453–456.
  109. https://doi.org/10.1007/s00114-011-0783-2
  110. Otto, R.L. (2017) Eucnemid larvae of the Nearctic Region. Part VII: Description of the larvae of Nematodes penetrans (LeConte, 1852) (Coleoptera: Eucnemidae: Macraulacinae: Nematodini), with notes on its hypermetamorphic life cycle. Insecta Mundi, 0545, 1–9.
  111. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E. & Engel, M.S. (2016) A defensive behavior and plant-insect interaction in Early Cretaceous amber—the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Structure & Development, 45, 133–139. https://doi.org/10.1016/j.asd.2015.08.002
  112. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E., Speranza, M., Wierzchos, J., Ascaso, C. & Engel, M.S. (2012) Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences, 109, 21414–21419. https://doi.org/10.1073/pnas.1213775110
  113. Pinto, J.D., Bologna, M.A. & Bouseman, J.K. (1996) First-instar larvae, courtship and oviposition in Eletica: amending the definition of the Meloidae (Coleoptera: Tenebrionoidea). Systematic Entomology, 21, 63–74. https://doi.org/10.1111/j.1365-3113.1996.tb00599.x
  114. Pohl, H. (2002) Phylogeny of the Strepsiptera based on morphological data of the first instar larvae. Zoologica Scripta, 31, 123–134. https://doi.org/10.1046/j.0300-3256.2001.00078.x
  115. Prell, H. (1911) Biologische Beobachtungen an Termiten und Ameisen. Zoologischer Anzeiger, 38, 243–253.
  116. Prokop, J., Krzemińska, E., Krzemiński, W., Rosová, K., Pecharová, M., Nel, A. & Engel, M.S. (2019) Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. Royal Society Open Science, 6 (9), 190460. https://doi.org/10.1098/rsos.190460
  117. Read, H.J. & Enghoff, H. (2009) The order Siphonophorida—A taxonomist’s nightmare? Lessons from a Brazilian collection. Soil Organisms, 81, 543–543.
  118. Redborg, K.E. (1998) Biology of the Mantispidae. Annual Review of Entomology, 43, 175–194. https://doi.org/10.1146/annurev.ento.43.1.175
  119. Redborg, K.E. & MacLeod, E.G. (1985) The developmental ecology of Mantispa uhleri Banks (Neuroptera: Mantispidae). Illinois Biological Monographs, 53, 1–130. https://doi.org/10.5962/bhl.title.49908
  120. Scholtz, C.H. & Grebennikov, V.V. (2011) 12. Scarabaeiformia Crowson, 1960. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Handbook of Zoology. Arthropoda: Insecta. Part. 38. Vol. 1. Coleoptera, Beetles. Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). 2nd edn. De Gruyter, Berlin, pp. 345–366. https://doi.org/10.1515/9783110904550.345
  121. Scholtz, C.H., Basson, R.J. & Bologna, M.A. (2018) The phoretic association between Cyaneolytta Péringuey (Coleoptera: Meloidae) triungulins and Anthia Weber (Coleoptera: Carabidae) in Southern Africa. African Entomology, 26, 555–558. https://doi.org/10.4001/003.026.0555
  122. Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  123. Šípek, P. & Král, D. (2012) Immature stages of the rose chafers (Coleoptera: Scarabaeidae: Cetoniinae): a historical overview. Zootaxa, 3323 (1), 1–26. https://doi.org/10.11646/zootaxa.3323.1.1
  124. Snyman, L.P. & Binoy, C. (2022) Evolutionary relic or a curious coincidence? A mantisfly emerging from a mud-dauber nest. Evolutionary Ecology, 36, 421–429. https://doi.org/10.1007/s10682-022-10167-8
  125. Švácha, P. (1994) Bionomics, behaviour and immature stages of Pelecotoma fennica (Paykull) (Coleoptera: Rhipiphoridae). Journal of Natural History, 28, 585–618. https://doi.org/10.1080/00222939400770271
  126. Švácha, P. & Lawrence, J.F. (2014) 2.4. Cerambycidae Latreille, 1802. In: Leschen, R.A.B. & Beutel, R.G. & (Eds), Handbook of Zoology. Arthropoda: Insecta. Part. 38. Vol. 3. Coleoptera, Beetles. Morphology and Systematics (Phytophaga). De Gruyter, Berlin, pp. 77–177. https://doi.org/10.1515/9783110274462.77
  127. Tauber, C.A. & Winterton, S.L. (2014) Third instar of the myrmecophilous Italochrysa insignis (Walker) from Australia (Neuroptera: Chrysopidae: Belonopterygini). Zootaxa, 3811 (1), 95–106. https://doi.org/10.11646/zootaxa.3811.1.5
  128. Tillyard, R.J. (1922) The life-history of the Australian moth-lacewing, Ithone fusca, Newman (Order Neuroptera Planipennia). Bulletin of Entomological Research, 13, 205–223. https://doi.org/10.1017/S000748530002811X
  129. Vargas-Ortiz, M., Goncalves, G.L., Huanca-Mamani, W., Vargas, H.A. & Moreira, G.R. (2019) Description, natural history and genetic variation of Caloptilia guacanivora sp. nov. Vargas-Ortiz & Vargas (Lepidoptera: Gracillariidae) in the Atacama Desert, Chile. Austral Entomology, 58, 171–191. https://doi.org/10.1111/aen.12351
  130. Viswam, J.P., Lee, C.K., Morgan, H.W. & McDonald, I.R. (2019) Laboratory rearing of huhu, Prionoplus reticularis (Cerambycidae): insights into the gut microbiome. New Zealand Journal of Zoology, 46, 1–12. https://doi.org/10.1080/03014223.2018.1461117
  131. Vitner, J. & Král, D. (2009) Immature stages and nest construction in Synapsis yunnanus (Coleoptera: Scarabaeidae). Annales de la Société Entomologique de France, 45, 49–66. https://doi.org/10.1080/00379271.2009.10697589
  132. Wasmann, E. (1897) Kleine Mitteilungen. Entomologische Nachrichten, 23 (2), 25–32.
  133. Wedmann, S., Makarkin, V.N., Weiterschan, T. & Hörnschemeyer, T. (2013) First fossil larvae of Berothidae (Neuroptera) from Baltic amber, with notes on the biology and termitophily of the family. Zootaxa, 3716 (2), 236–258. https://doi.org/10.11646/zootaxa.3716.2.6
  134. White, R.A., Jr. & Franklin, R.T. (1982) External morphology of larval Thanasimus dubius (Fabricius) (Coleoptera: Cleridae). The Coleopterists Bulletin, 36, 143–152. https://doi.org/10.2307/4008038
  135. Yang, A.S. (2001) Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evolution & Development, 3 (2), 59–72. https://doi.org/10.1046/j.1525-142x.2001.003002059.x
  136. Yang, Q., Wang, Y., Labandeira, C.C., Shih, C. & Ren, D. (2014) Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera). BMC Evolutionary Biology, 14, 126. https://doi.org/10.1186/1471-2148-14-126
  137. Yu, T.T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Xia, F.Y., Zhang, H.C., Wang, B. & Dilcher, D. (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences, 116, 11345–11350. https://doi.org/10.1073/pnas.1821292116
  138. Zhao, Z.P., Shih, C.K., Gao, T.P. & Ren, D. (2021) Termite communities and their early evolution and ecology trapped in Cretaceous amber. Cretaceous Research, 117, 104612. https://doi.org/10.1016/j.cretres.2020.104612
  139. Zippel, A., Haug, C., Hoffeins, C., Hoffeins, H.-W. & Haug, J.T. (2022b) Expanding the record of larvae of false flower beetles with prominent terminal ends. Rivista Italiana di Paleontologia e Stratigrafia, 128, 81–104. https://doi.org/10.54103/2039-4942/17084
  140. Zippel, A., Haug, C., Müller, P. & Haug, J.T. (2022a) First fossil tumbling flower beetle-type larva from 99 million-year-old amber. Paläontologische Zeitschrift, 96, 219–229. https://doi.org/10.1007/s12542-022-00608-8
  141. Zippel, A., Haug, C., Müller, P. & Haug, J.T. (2023) The first fossil false click beetle larva preserved in amber. Paläontologische Zeitschrift, 97, 209–215. https://doi.org/10.1007/s12542-022-00638-2