Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2011-08-23
Page range: 57–64
Abstract views: 52
PDF downloaded: 3

Systematics and molecular phylogenetics of Asian snail-eating snakes (Pareatidae)

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China 610041
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA 02138
Wuhan Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China 430072
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China 610041
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China 610041
Reptilia Aplopeltura Asthenodipsas genetic divergence mitochondrial genes nuclear genes Pareas scale patterns

Abstract

The taxonomy of the Asian snail-eating snakes (Pareatidae) is an ongoing controversy, partly because morphological characters do not yield consistent results across studies. We infer phylogenetic relationships within Pareatidae using ~ 2 kilobases of DNA sequences including two mitochondrial (cyt b and ND4) and one nuclear gene (c-mos). Results reveal four major lineages: Aplopeltura, Asthenodipsas, a clade formed by Pareas carinatus and P. nuchalis, and a clade comprising all other species of Pareas sampled in this study. Our data do not have enough signal to either support or reject a monophyletic Pareas. However, large molecular divergence (16.5%) is observed between the two major clades of Pareas, a level that is comparable to that between Pareas and Aplopeltura. Scale characters also suggest that P. carinatus and P. nuchalis are distinct from congeners, and future morphological and/or molecular studies might assess whether a distinct genus should be recognized. The molecular phylogeny further suggests a distant relationship between P. chinensis and P. formosensis and supports the validity of the former species.

References

  1. Arévalo, E., Davis, S.K. & Site, J.W. (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosomes races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43, 387–418.

    Boie, F. (1827) Bemerkungen über Merrem's Versuch eines Systems der Amphibien, 1. Lieferung: Ophidier. Isis van Oken, Jena, 20, 508–566

    Boie, H. (1828) Auszüge aus Briefen von Heinr. Boie zu Java an Hn. Schlegel, Conservator anim. vertebr. am Königl. niederl. Museum. lsis van Oken, Jena, 21, 1025–1035

    Boulenger, G.A. (1900) Description of new reptiles and batrachians from Bomeo. Proceedings of Zoological Society of London, 69, 182–187.

    Bryson, R.W., Pastorini, J., Burbrink, F.T., Forstner, M.R.J., (2007) A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Molecular Phylogenetics Evolution, 43, 674–684.

    Burbrink, F.T., Lawson, R. & Slowinksi, J.B. (2000) MtDNA phylogeography of the North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution, 54, 2107–2118.

    de Queiroz, A., Lawson, R. & Lemos-Espinal, J.A. (2002) Phylogenetic relationships of North American garter snakes: how much DNA is enough? Molecular Phylogenetics and Evolution, 22, 315–329.

    Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. (1995) Testing significance of incongruence. Cladistics, 10, 315–319.

    Gower, D.J. (2003) Scale microornamentation of uropeltid snakes. Journal of Morphology, 258, 249–268.

    Grossmann, W. & Tillack, F. (2003) On the taxonomic status of Asthenodipsas tropidonotus (Van Lidth de Jeude, 1923) and Pareas vertebralis (Boulenger, 1900) (Serpentes: Colubridae: Pareatinae). Russian Journal of Herpetology, 10, 175–190.

    Guo, K.J. & Deng, X.J. (2009) A new species of Pareas (Serpentes: Colubridae: Pareatinae) from the Gaoligong Mountains, southwestern China. Zootaxa, 2008, 53–60.

    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    He, M. (2009) Discussion on taxonomy of colurbid snakes based on scale micro-ornamentations—Unpubl. Ph.D. thesis, Sichuan University. [In Chinese]

    Huang, Q.Y. (2004). Pareas macularius Theobald, 1868 should be a junior synonym of Pareas margaritophorus Jan, 1866. Sichuan Journal of Zoology, 23, 207–208 [In Chinese].

    Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.

    Jiang, Y.M. (2004) Pareas chinensis (Babour, 1912) should be a junior synonym of Pareas formosensis (Van Denburgh, 1909). Sichuan Journal of Zoology, 23, 209–210 [In Chinese].

    Kishino, H. & Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution, 29, 170–179.

    Kraus, F. & Brown, W.M. (1998) Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences. Zoological Journal of the Linnean Society, 122, 455-487.

    Lawson, R., Slowinski, J.B., Crother, B.I. & Burbrink, F.T. (2005) Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37, 581–601.

    Ota, H., Lin, J.T., Hirata, T. & Chen, S.L. (1997) Systematic review of colubrid snakes of the genus Pareas in the East Asian Islands. Journal of Herpetology, 31, 79–87.

    Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Pope, C.H. (1935) The reptiles of China: turtles, crocodilians, snakes, lizards. Natural history of Central Asia Vol. X. New York: The American Museum of Natural History.

    Price, R.M. (1982) Dorsal snake scale microdermatoglyphics: ecological indicator or taxonomic tool? Journal of Herpetology, 16, 294–306.

    Pyron, R.A., Burbrink, F.T., Colli, G.R., de Oca, A.N., Vitt, L.J., Kuczynski, C.A. & Wiens, J.J. (2011) The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution, 58, 329–342.

    Rao, D.Q. & Yang, D.T. (1992) Phylogenetic systematics of Pareatinae (Serpentes) of Southeastern Asia and adjacent islands with relationship between it and the geology changes. Acta Zoologica Sinica, 38, 139–150. [In Chinese].

    Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual, second edtion. New York: Cold Spring Harbor Laboratory Press.

    Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of Log–likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.

    Slowinski, J.B. & Lawson, R. (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 23,194–202.

    Swofford D.L. (2003) PAUP* bv10: Phylogenetic analysis using parsimony (* and other methods) v. 4. Sinauer Associates, Sunderland, MA.

    Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Taylor, E.H. (1965) The serpents of Thailand and adjacent waters. University of Kansas Science Bulletin, 45, 609–1096.

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Vidal, N., Delmas, A.S., David, P., Cruaud, C., Couloux, A. & Hedges, S.B. (2007) The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. Comptes Rendus Biologie, 330, 182–187.

    Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites Jr., J.W., Townsend, T.M., Reeder, T.W. (2008) Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology, 57, 420–431.

    Zhao E. (2006) Snakes of China. Hefei: Anhui Science and Technology Publishing House. [In Chinese].

    Zwickl, D. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion—Unpubl. Ph.D. thesis, University of Texas at Austin.