Abstract
Gymnocypris waddelli, a highland cold-water fish, is distributed among rivers and lakes of the southern Qinghai-Tibet Plateau. Although previously described as G. waddelli, specimens from the Pengqu River are morphologically distinguishable from those from Lake Yamzhog Yumco, which is the type locality of G. waddelli. We investigated morphological variations of G. waddelli specimens from Pengqu River and Lake Yamzhog Yumco using not only traditional morphological methods but also newly-developed geometric morphometric analysis; furthermore, mitochondrial Cytochrome b (Cyt b) gene analysis was employed to explore the phylogenetic position of the Pengqu River population. Our morphological analyses suggested that G. waddelli from the Pengqu River had an obtuse snout, nearly straight oral fissure, shorter lower jaw than upper jaw, broad mouth and sparse inside gill rakers of the first arch relative to the Lake Yamzhog Yumco population. The strongly supported monophyly of Pengqu population according to mitochondrial datasets was obtained, indicating genetic differences between Pengqu River and Lake Yamzhog Yumco populations. Given their substantial genetic and morphological divergence, specimens from Pengqu River warrant recognition as a distinct species, here described and named Gymnocypris pengquensis.
References
Abaad, M., Tuset, V.M., Montero, D., Lombarte, A., Otero-Ferrer, J.L. & Haroun, R. (2016) Phenotypic plasticity in wild marine fishes associated with fish-cage aquaculture. Hydrobiologia, 765, 343–358.
http://dx.doi.org/10.1007/s10750-015-2428-5Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5–16.
http://dx.doi.org/10.1080/11250000409356545Bagra, K., Kadu, K., Nebeshwar-Sharma, K., Laskar, B.A., Sarkar, U.K. & Das, D.N. (2009) Ichthyological survey and review of the checklist of fish fauna of Arunachal Pradesh, India. Check list, 5, 330–350.
Berner, D., Adams, D.C., Grandchamp, A.C. & Hendry, A.P. (2008) Natural selection drives patterns of lake–stream divergence in stickleback foraging morphology. Journal of evolutionary biology, 21, 1653–1665.
http://dx.doi.org/10.1111/j.1420-9101.2008.01583.xBerner, D., Grandchamp, A.C. & Hendry, A.P. (2009) Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution, 63, 1740–1753.
http://dx.doi.org/10.1111/j.1558-5646.2009.00665.xChakrabarty, P., Chu, J., Nahar, L. & Sparks, J.S. (2010) Geometric morphometrics uncovers a new species of ponyfish (Teleostei: Leiognathidae: Equulites), with comments on the taxonomic status of Equula berbis Valenciennes. Zootaxa, 2427, 15–24.
http://dx.doi.org/10.11646/zootaxa.2427.1.2Chen, Y.F. & Cao, W.X. (2000) Schizothoracinae. In: Yue, P.Q. (Ed.), Fauna Sinica, Osteichthyes, Cypriniformes III. Science Press, Beijing, 273335, pp. 273–433. [in Chinese]
Duan, Z.Y., Zhao, K., Peng, Z.G., Li, J.B., Diogo, R., Zhao, X.Q. & He, S.P. (2009) Comparative phylogeography of the Yellow River schizothoracine fishes (Cyprinidae): Vicariance, expansion, and recent coalescence in response to the Quaternary environmental upheaval in the Tibetan Plateau. Molecular phylogenetics and evolution, 53, 1025–1031.
http://dx.doi.org/10.1016/j.ympev.2009.03.034Günther, A.C.L.G. (1868) Catalogue of the Fishes in the British Museum. The Trustees, London, 512 pp.
Green, M.R. & Sambrook, J. (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. New York, 2028 pp.
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology, 52, 696–704.
http://dx.doi.org/10.1080/10635150390235520Herzenstein, S.M. (1891) Wissenschaftlichen Resultate der von N M. Przewalski nach Central-Asien. Zoologischer Theil Ithiere, 2, 181–262.
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
http://dx.doi.org/10.1007/bf01731581Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.
http://dx.doi.org/10.1111/j.1755-0998.2010.02924.xKong, P., Na, C.G., Brown, R., Fabel, D., Freeman, S., Xiao, W. & Wang, Y.J. (2011) Cosmogenic 10Be and 26Al dating of paleolake shorelines in Tibet. Journal of Asian Earth Sciences, 41, 263–273.
http://dx.doi.org/10.1016/j.jseaes.2011.02.016Li, S.C. & Chang, S.Y. (1974) Two new species and one new subspecies of fishes from the northern part of Kansu Province, China. Acta Zoologica Sinica, 20, 414–419.
Msnon, A.G.K. (1954) Fish geography of the Himalayas. Proceedings of the National Institute of Sciences of India, 20, 467–493.
Muschick, M., Indermaur, A. & Salzburger, W. (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology, 22, 2362–2368.
http://dx.doi.org/10.1016/j.cub.2012.10.048Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Østbye, K., Amundsen, P.A., Bernatchez, L., Klemetsen, A., Knudsen, R., Kristoffersen, R., Naesje, T.F. & Hindar, K. (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Molecular Ecology, 15, 3983–4001.
http://dx.doi.org/10.1111/j.1365-294x.2006.03062.xQi, D.L., Li, T.P., Zhao, X.Q., Guo, S.C. & Li, J.X. (2006) Mitochondrial cytochrome b sequence variation and phylogenetics of the highly specialized schizothoracine fishes (Teleostei : Cyprinidae) in the Qinghai-Tibet Plateau. Biochemical Genetics, 44, 270–285.
http://dx.doi.org/10.1007/s10528-006-9022-5Qiao, H.Y., Cheng, Q.Q. & Chen, Y. (2014) Complete mitochondrial genome sequence of Gymnocypris dobula (Cypriniformes: Cyprinidae). Mitochondrial DNA, 25, 21–22.
http://dx.doi.org/10.3109/19401736.2013.775270Regan, C.T. (1905) Descriptions of five new cyprinid fishes from Lhasa, Tibet, collected by Captain HJ Walton, I.M.S. Annals and Magazine of Natural History, 7, 185–188.
http://dx.doi.org/10.1080/03745480509442816Rolhf, F.J. (2006) TpsDig2 for Windows version 2.10. Department of Ecology and Evolution, State University of New York, Stony Book. Available from: http://life.bio.sunysb.edu/morph/ (Accssed 28 July 2006)
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61, 539–542.
http://dx.doi.org/10.1093/sysbio/sys029Sharma, U.P. (1996) Ecology of the Koshi river in Nepal-India (north Bihar): a typical river ecosystem. Environment and biodiversity: In the context of South Asia, 92–99.
Shrestha, J. (1999) Coldwater fish and fisheries in Nepal. Fish and fisheries at higher altitudes: Asia. FAO Fish. Technical Paper, 385, 13–40.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
http://dx.doi.org/10.1093/molbev/mst197Tchang, T.L., Yueh, T.H. & Hwang, H.C. (1964) Notes on fishes of the genus gymnocypris of southern tibet, china, with description of four new species and a new subspecies. ACTA Zoologica Sinica, 16, 151–154.
Theis, A., Ronco, F., Indermaur, A., Salzburger, W. & Egger, B. (2014) Adaptive divergence between lake and stream populations of an East African cichlid fish. Molecular Ecology, 23, 5304–5322.
http://dx.doi.org/10.1111/mec.12939Wanek, K.A. & Sturmbauer, C. (2015) Form, function and phylogeny: comparative morphometrics of Lake Tanganyika's cichlid tribe Tropheini. Zoologica Scripta, 44, 362–373.
http://dx.doi.org/10.1111/zsc.12110Wu, Y. & Wu, C. (1992) The fishes of the Qinghai-Xizang plateau. Sichuan Publishing House of Science and Technology, Chengdu, pp. 297–515. [in Chinese]
Xiao, W.H., Zhang, Y.P. & Liu, H.Z. (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Molecular Phylogenetics and Evolution, 18, 163–173.
http://dx.doi.org/10.1006/mpev.2000.0879Zelditch, M.L., Swiderski, D.L. & Sheets, H.D. (2012) Geometric morphometrics for biologists: a primer. Academic Press, 478 pp.
Zhang, R.Y., Peng, Z.G., Li, G.G., Zhang, C.F., Tang, Y.T., Gan, X.N., He, S.P. & Zhao, K. (2013) Ongoing speciation in the Tibetan plateau Gymnocypris species complex. PLoS One, 8, e71331.
http://dx.doi.org/10.1371/journal.pone.0071331Zhao, K., Duan, Z.Y., Peng, Z.G., Gan, X.N., Zhang, R.Y., He, S.P. & Zhao, X.Q. (2011) Phylogeography of the endemic Gymnocypris chilianensis (Cyprinidae): Sequential westward colonization followed by allopatric evolution in response to cyclical Pleistocene glaciations on the Tibetan Plateau. Molecular Phylogenetics and Evolution, 59, 303–310.
http://dx.doi.org/10.1016/j.ympev.2011.02.001Zhao, K., Duan, Z.Y., Peng, Z.G., Guo, S.C., Li, J.B., He, S.P. & Zhao, X.Q. (2009) The youngest split in sympatric schizothoracine fish (Cyprinidae) is shaped by ecological adaptations in a Tibetan Plateau glacier lake. Molecular Ecology, 18, 3616–28.
http://dx.doi.org/10.1111/j.1365-294x.2009.04274.x