Skip to main content Skip to main navigation menu Skip to site footer
Type: Correspondence
Published: 2016-07-06
Page range: 393–396
Abstract views: 59
PDF downloaded: 2

Bottomless barrel-sponge species in the Indo-Pacific?

Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Germany Department of Biology, Zoology and Animal engineering lab, Sepuluh November Institute of Technology, Surabaya, Indonesia
Naturalis Biodiversity Center, Leiden, the Netherlands
Biodiversity Program, Queensland Museum, South Brisbane, Australia Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Germany GeoBio-CenterLMU Ludwig-Maximilians-Universität München, Munich, Germany SNSB – Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Germany GeoBio-CenterLMU Ludwig-Maximilians-Universität München, Munich, Germany
Porifera

Abstract

The use of nuclear markers, in addition to traditional mitochondrial markers, helps to clarify hidden patterns of genetic structure in natural populations (Palumbi & Baker, 1994). This is particularly evident among demosponges that possess slow mitochondrial evolutionary rates compared to Bilateria, where nuclear intron markers can aid in the understanding of shallow level phylogenetic relationships (Shearer et al., 2002). Ideally, these nuclear markers (i) are evolutionary well-conserved across different lineages, (ii) produce amplicons holding a number of sites with sufficient variability to answer the relevant phylogenetic question, (iii) derive from single copy genes (see review in Zhang & Hewitt, 2003). A popular method to amplify intron markers uses EPIC (Exon-Primed, Intron-Crossing) primers that anneal to the more conserved flanking exon regions and subsequently bridge the intron during amplification (Palumbi & Baker, 1994).

 

References

  1. Angermeier, H., Kamke, J., Abdelmohsen, U.R., Krohne, G., Pawlik, J.R., Lindquist, N.L. & Hentschel, U. (2011) The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiology Ecology, 75, 218–230.
    http://dx.doi.org/10.1111/j.1574-6941.2010.01001.x

    Bell, J.J., Smith, D., Hannan, D., Haris, A., Jompa, J. & Thomas, L. (2014) Resilience to disturbance despite limited dispersal and self-recruitment in tropical barrel sponges: implications for conservation and management. PLOS ONE, 9, e91635.
    http://dx.doi.org/10.1371/journal.pone.0091635

    Bentlage, B. & Wörheide, G. (2007) Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of rDNA and nuclear intron sequences. Coral Reefs, 26, 807–816.
    http://dx.doi.org/10.1007/s00338-007-0267-1

    Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolution Bioinformatics Online, 1, 47–50.

    Flot, J.F. (2010) Seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources, 10, 162–166.
    http://dx.doi.org/10.1111/j.1755-0998.2009.02732.x

    Jarman, S.N., Ward, R.D. & Elliott, N.G. (2002) Oligonucleotide primers for PCR amplification of coelomate introns. Marine Biotechnology, 4, 347–355.
    http://dx.doi.org/10.1007/s10126-002-0029-6

    Jones, G.P., Srinivasan, M. & Almany, G.R. (2007) Population connectivity and conservation of marine biodiversity. Oceanography, 20, 100–111.
    http://dx.doi.org/10.5670/oceanog.2007.33

    Lamarck, J.B.P.D.M., Comte De (1815) Suite des polypiers empâtés. In: Mémoires du Muséum d’Histoire naturelle, Paris, Paris, pp. 69–80, 162–168, 331–340.

    Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
    http://dx.doi.org/10.1093/bioinformatics/btp187

    Palumbi, S.R. & Baker, C.S. (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution, 11, 426–435.

    Reveillaud, J., Remerie, T., van Soest, R., Erpenbeck, D., Cardenas, P., Derycke, S., Xavier, J.R., Rigaux, A. & Vanreusel, A. (2010) Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Molecular Phylogenetics and Evolution, 56, 104–114.
    http://dx.doi.org/10.1016/j.ympev.2010.03.034

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
    http://dx.doi.org/10.1093/sysbio/sys029

    Rua, C.P.J., Zilberberg, C. & Sole-Cava, A.M. (2011) New polymorphic mitochondrial markers for sponge phylogeography. Journal of the Marine Biological Association of the United Kingdom, 91, 1015–1022.
    http://dx.doi.org/10.1017/S0025315410002122

    Setiawan, E., de Voogd, N.J., Swierts, T., Hooper, J.N.A., Wörheide, G. & Erpenbeck, D. (2016) MtDNA diversity of the Indonesian giant barrel sponge Xestospongia testudinaria (Porifera: Haplosclerida) - implications from partial cytochrome oxidase 1 sequences. Journal of the Marine Biological Association of the United Kingdom, 96, 323–332.
    http://dx.doi.org/10.1017/S0025315415001149

    Shearer, T.L., van Oppen, M.J.H., Romano, S.L. & Wörheide, G. (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology, 11, 2475–2487.
    http://dx.doi.org/10.1046/j.1365-294X.2002.01652.x

    Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.
    http://dx.doi.org/10.1080/10635150802429642

    Swierts, T., Peijnenburg, K.T.C.A., de Leeuw, C., Cleary, D.F.R., Hörnlein, C., Setiawan, E., Wörheide, G., Erpenbeck, D. & de Voogd, N.J. (2013) Lock, stock and two different barrels: comparing the genetic composition of morphotypes of the Indo-Pacific sponge Xestospongia testudinaria. PLOS ONE, 8, e74396.
    http://dx.doi.org/10.1371/journal.pone.0074396

    van Soest, R.W.M. (1989) The Indonesian sponge fauna: A status report. Netherlands Journal of Sea Research, 23, 223–230.
    http://dx.doi.org/10.1016/0077-7579(89)90016-1

    Vargas, S., Schuster, A., Sacher, K., Büttner, G., Schätzle, S., Läuchli, B., Hall,K., Hooper, J.N.A., Erpenbeck, D. & Wörheide, G. (2012) Barcoding sponges: an overview based on comprehensive sampling. PLOS ONE, 7, e39345.
    http://dx.doi.org/10.1371/journal.pone.0039345

    Zhang, D.-X. & Hewitt, G.M. (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12, 563–584.
    http://dx.doi.org/10.1046/j.1365-294X.2003.01773.x