Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2016-11-20
Page range: 120–128
Abstract views: 118
PDF downloaded: 3

Sexual dimorphism in a freshwater atyid shrimp (Decapoda: Caridea) with direct development: a geometric morphometrics approach

Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Buenos Aires, Argentina.
Universidad de Buenos Aires. CONICET. Instituto De Investigaciones Matemáticas "Luis A. Santalo" (IMAS). Buenos Aires, Argentina.
Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Buenos Aires, Argentina.
Crustacea Neocaridina davidi carapace second abdominal segment geometric morphometrics sexual dimorphism

Abstract

Neocaridina davidi is a caridean shrimp that has gained popularity in recent years as an ornamental species. Using geometric morphometrics, we investigated sexual dimorphism in carapace and second abdominal segment shape of N. davidi. Adult females displayed a more elongated carapace and a longer rostrum than males. However, male carapace shape was similar to that of juvenile females. The second abdominal pleura was more elongated and wider in adult females than in males. Significant differences were found in centroid size for the carapace and the second abdominal segment between sexes, which is consistent with sexual size dimorphism. These results support the hypothesis of a “pure search” mating system in N. davidi, where small males search actively for receptive females, and after insemination they continue searching.

 

References

  1. Accioly, I.V., Lima-Filho, P.A., Santos, T.L., Barbosa, A.C.A., Santos Campos, L.B., Souza, J.V., Araújo, W.C. & Molina, W.F. (2013) Sexual dimorphism in Litopenaeus vannamei (Decapoda) identified by geometric morphometrics. Pan-American Journal of Aquatic Sciences, 8 (4), 276–281.

    Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5–16.

    Adams, D.C., Rohlf, F.J. & Slice, D.E. (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy.
    http://dx.doi.org/10.4404/hystrix-24.1-6283

    Anastasiadou, C., Liasko, R. & Leonardos, I.D. (2009) Biometric analysis of lacustrine and riverine populations of Palemonetes antennarius (H. Milne-Edwards, 1837) (Crustacea, Decapoda, Palaemonidae) from north-western Greece. Limnologica, 39, 244–254.
    http://dx.doi.org/10.1016/j.limno.2008.07.006

    Andersson, M. (1994) Sexual selection. Princeton University Press, Princeton, New Jersey, USA, 599 pp.

    Bauer, R.T. (2004) Remarkable shrimps: Adaptations and Natural History of the Carideans. University of Oklahoma Press, Norman, 282 pp.

    Bauer, R.T., Okuno, J. & Thiel M. (2014) Inferences on mating and sexual systems of two Pacific Cinetorhynchus shrimps (Decapoda, Rhynchocinetidae) based on sexual dimorphism in body size and cheliped weaponry. ZooKeys, 457, 187–209.
    http://dx.doi.org/10.3897/zookeys.457.6512

    Barbier, C. (2010) Crevettes d´eau douce en aquariophilie: exemple de maintenance de la Neocaridina heteropoda pour les débutants. Thèse d’exercise, Médecine vétérinaire, Université Toulouse 3, pp. 1–100.

    Baringhaus, L. & Franz, C. (2004) On a new multivariate two-sample test. Journal of Multivariate Analysis, 88, 190–206.

    Barría, E.M., Sepúlveda, R.D. & Jara, C.G. (2011) Morphologic variation in Aegla Leach (Decapoda: Reptantia: Aeglidae) from Central-Southern Chile: interspecific differences, sexual dimorphism, and spatial segregation. Journal of Crustacean Biology, 31 (2), 231–239.
    http://dx.doi.org/10.1651/10-3324.1

    Bertin, A., David, B., Cézilly, F. & Alibert, P. (2002) Quantification of sexual dimorphism in Asellus aquaticus (Crustacea: Isopoda) using outline approaches. Biological Journal of the Linnean Society, 77, 523–533.
    http://dx.doi.org/10.1046/j.1095-8312.2002.00125.x

    Bissaro, F.G., Gomes-Jr, J.L. & Madeira Di Beneditto, A.P. (2013) Morphometric variation in the shape of the cephalothorax of shrimp Xiphopenaeus kroyeri on the east coast of Brazil. Journal of the Marine Biological Association of the United Kingdom, 93 (3), 683–691.
    http://dx.doi.org/10.1017/S0025315412000409

    Boone, L. (1931) Anomuran, macruran Crustacea from Panama and Canal Zone. Bulletin of the American Museum of Natural History, 63 (2), 137–189.

    Bouvier, E.L. (1904) Crevettes de la famille des Atyidés: espèces qui font partie des collections du Muséum d’histoire naturelle. Bulletin du Muséum d’histoire naturelle, 3, 129–137.

    Cabrera Peña, J. (1982) Carácter práctico para diferenciación de sexos en Macrobrachium tenellum (Crustacea: Decapoda: Natantia). Revista de Biología Tropical, 31 (1), 159–160.

    Cheng, R.C. & Kuntner, M. (2015) Disentangling the size and shape components of sexual dimorphism. Evolutionary Biology, 42 (2), 223–234.
    http://dx.doi.org/10.1007/s11692-015-9313-z

    Correa, C. & Thiel, M. (2003) Mating systems in caridean shrimp (Decapoda: Caridea) and their evolutionary consequences for sexual dimorphism and reproductive biology. Revista Chilena de Historia Natural, 76, 187–203.

    de Man J.G. (1879) On some species of the genus Palaemon Fabr. with descriptions of two new forms. Notes from the Leyden Museum, 1 (3), 165–184.

    Giri, F. & Loy, A. (2008) Size and shape variation of two freshwater crabs in Argentinean Patagonia: the influence of sexual dimorphism, habitat, and species interactions. Journal of Crustacean Biology, 28 (1), 37–45.

    Gunz, P. & Mitteroecker, P. (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy, 24 (1), 103–109.
    http://dx.doi.org/10.4404/hystrix-24.1-6292

    Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1), 1–9.

    Hedrick, A.V. & Temeles, E.J. (1989) The evolution of sexual dimorphism in animals: hypotheses and tests. Trends in Ecology and Evolution, 4 (5), 136–138.

    Heerbrandt, T.C. & Lin, J. (2006) Larviculture of Red Front Shrimp, Caridina gracilirostris (Atyidae, Decapoda). Journal of the World Aquaculture Society, 37 (2), 186–190.

    Herler, J., Kerschbaumer, M., Mitteroecker, P., Postl, L. & Sturmbauer, C. (2010) Sexual dimorphism and population divergence in the Lake Tanganyika cichlid fish genus Tropheus. Frontiers in Zoology, 7 (4), 1–10.
    http://dx.doi.org/10.1186/1742-9994-7-4

    Klotz, W., Miesen, F.W., Hüllen, S. & Herder, F. (2013) Two Asian fresh water shrimp species found in a thermally polluted stream system in North Rhine-Westphalia, Germany. Aquatic Invasions, 8 (3), 333–339.
    http://dx.doi.org/10.3391/ai.2013.8.3.09

    Lereboullet, A. (1862) Recherches d'embryologie comparée sur le développement du brochet, de la perche et de l'écrevisse. Mémoires de l'Académie des Sciences de l'Institut de France, 17, 447–805.Liang, X. Q. (2002) On new species of atyid shrimps (Decapoda, Caridea) from china. Oceanologia Et Limnologia Sinica, 33, 167–173.

    Manning, R.B. & Chace, F.A. Jr. (1971) Shrimps of the family Processidae from the northwestern Atlantic Ocean (Crustacea: Decapoda: Caridea). Smithsonian Contributions to Zoology, 89, 1–41.

    Mantel, S.K. & Dudgeon, D. (2005) Reproduction and sexual dimorphism of the palaemonid shrimp Macrobrachium hainanense in hong kong streams. Journal of Crustacean Biology, 25 (3), 450–459.
    http://dx.doi.org/10.1651/C-2541

    Marochi, M.Z., Trevisan, A., Gomes, F.B. & Masunari, S. (2016) Dimorfismo sexual em Hepatus pudibundus (Crustacea, Decapoda, Brachyura). Iheringia, Série Zoologia.
    http://dx.doi.org/10.1590/1678-4766e2016003

    Milne Edwards, H. (1837) Histoire naturelle des Crustacés, comprenant l’anatomie, la physiologie et la classification de ces animaux. Vol. 2. Librairie encyclopédique de Roret, Paris, 532 pp.
    http://dx.doi.org/10.5962/bhl.title.39738

    Mitteroecker, P., Gunz, P., Windhager, S. & Schaefer, K. (2013) A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, the Italian Journal of Mammalogy, 24 (1), 59–66.
    http://dx.doi.org/10.4404/hystrix-24.1-6369

    Mitteroecker, P. & Gunz, P. (2009) Advances in Geometric Morphometrics. Evolutionary Biology, 36, 235–247.
    http://dx.doi.org/10.1007/s11692-009-9055-x

    Nagamine, C.M. & Knight, A.W. (1980) Development, maturation, and function of some sexually dimorphic structures of the malaysian prawn, Macrobrachium rosenbergii (De Man) (Decapoda, Palaemonidae). Crustaceana, 39 (2), 141–152.

    Pantaleão, J.A.F, Gregati, R.A, da Costa, R.C., López-Greco, L.S. & Negreiros-Fransozo, M.L. (2015) Post-hatching development of the ornamental ‘Red Cherry Shrimp’ Neocaridina davidi (Bouvier, 1904) (Crustacea, Caridea, Atyidae) under laboratorial conditions. Aquaculture Research, pp. 1–17.
    http://dx.doi.org/10.1111/are.12903

    Parisi, B. (1919) I Decapodi giapponese del Museo di Milano. VII. Natantia. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 58 (1), 59–99.

    Patoka, J., Bláha, M., Devetter, M., Rylková, K., Čadková, Z. & Kalous, L. (2015) Aquarium hitchhikers: attached commensals imported with freshwater shrimps via the pet trade. Biological Invasions, 18, 457–461.
    http://dx.doi.org/10.1007/s10530-015-1018-9

    R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ (Accessed 17 Nov. 2016)

    Rasch, J.A. & Bauer, R.T. (2016) The functional morphology and role of the thelycum in insemination, and its relation to the mating system in the seagrass shrimp Ambidexter symmetricus (Decapoda: Processidae). Invertebrate Biology, 135 (2), 163–173.
    http://dx.doi.org/10.1111/ivb.12126

    Responte, A.A., Torres, M.A.J., Gorospe, J., Tabugo, S.R.E., Manting, M.M.E. & Demayo, C.G. (2015) Describing variations in the carapace shape of the red-clawed crab Perisesarma bidens. Advances in Environmental Biology, 9 (19), 137–145.

    Royston, J.P. (1983) Some techniques for assessing multivariate normality based on the Shapiro-Wilk W. Applied Statistics, 32 (2), 121–133.

    Rohlf, F.J. (2004a) tpsRelw, relative warps analysis, version 1.54. Department of Ecology and Evolution, State University of New York at Stony Brook.

    Rohlf, F.J. (2004b) tpsUtil, file utility program, version 1.6. Department of Ecology and Evolution, State University of New York at Stony Brook.

    Rohlf, F.J. (2005) tpsDig, digitize landmarks and outlines, version 2.22. Department of Ecology and Evolution, State University of New York at Stony Brook.

    Rohlf, F.J. & Marcus, L.F. (1993) A revolution in morphometrics. Trends in Ecology and Evolution, 8 (4), 129–132.

    Rufino, M., Abelló, P. & Yule, A.B. (2004) Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): An application of geometric morphometric analysis to crustaceans. Italian Journal of Zoology, 71 (1), 79–83.
    http://dx.doi.org/10.1080/11250000409356554

    Scalici, M. & Gibertini, G. (2009) Sexual dimorphism and ontogenetic variation in the carapace of A. pallipes (Lereboullet, 1858). Italian Journal of Zoology, 76 (2), 179–188.
    http://dx.doi.org/10.1080/11250000802334635

    Smith, S.I. (1871) List of the Crustacea collected by J. A. McNiel in Central America. Annual Report of the Peabody. Academy of Science, 1869, 87–98

    Torres, M.V., Giri, F. & Collins, P.A. (2014) Geometric morphometric analysis of the freshwater prawn Macrobrachium borellii (Decapoda: Palaemonidae) at a microgeographical scale in a floodplain system. Ecological Research, 29, 959–968.
    http://dx.doi.org/10.1007/s11284-014-1184-8

    Trevisan, A., Marochi, M.Z., Costa, M., Santos, S. & Masunari, S. (2012) Sexual dimorphism in Aegla marginata (Decapoda: Anomura). Nauplius, 20 (1), 75–86

    Tropea, C. & López Greco, L.S. (2015) Female growth and offspring quality over successive spawnings in a caridean shrimp Neocaridina davidi (Decapoda, Atyidae) with direct development. The Biological Bulletin, 229 (3), 243–254.

    Vogt, G. (2013) Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. Biological Reviews, 88, 81–116.
    http://dx.doi.org/10.1111/j.1469-185X.2012.00241.x

    Wickler, W. & Seibt, U. (1981) Monogamy in Crustacea and Man. Zeitschrift für Tierpsychologie, 57, 215–234.

    Zimmermann, G., Bosc, P., Valade, P., Cornette, R., Améziane, N. & Debat, V. (2012) Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zoologica, 93, 492–500.
    http://dx.doi.org/10.1111/j.1463-6395.2011.00524.x

    Wyman, M.J., Stinchcombe, J.R. & Rowe, L. (2013) A multivariate view of the evolution of sexual dimorphism. Journal of Evolutionary Biology, 26, 2070–2080.
    http://dx.doi.org/10.1111/jeb.12188