Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-01-20
Page range: 501–552
Abstract views: 139
PDF downloaded: 3

Cryptic within cryptic: genetics, morphometrics, and bioacoustics delimitate a new species of Eleutherodactylus (Anura: Eleutherodactylidae) from Eastern Cuba

Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany Zoological Institute, University of Veterinary Medicine (TiHo) Hannover, Bünteweg 17, 30559 Hannover, Germany.
Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd Americo Vespucio s/n, 41092 Seville, Spain
Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd Americo Vespucio s/n, 41092 Seville, Spain
Laboratorio de Conducta Animal, Instituto de Ecología, Ciudad Universitaria, Universidad Nacional Autónoma de México, Circuito Exterior AP 70-275, México, DF 04510, Mexico
Museo de Historia Natural “Felipe Poey”, Facultad de Biología, Universidad de La Habana, Cuba
Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd Americo Vespucio s/n, 41092 Seville, Spain
Amphibia Terrarana species delimitation integrative taxonomy Caribbean

Abstract

We studied the variation in genetics, bioacustics, and morphology in Eleutherodactylus glamyrus, a regionally endemic frog species restricted to high elevations in the Sierra Maestra Massif, Western Cuba that was originally described as a cryptic species hidden under the name E. auriculatus. Genetic analysis of mtDNA sequences of the 16S and cob genes identify two allopatric and strongly supported mitochondrial clades (phylogroups) which also showed no haplotype sharing in the nuclear Rag-1 gene. Bioacustic, and morphological comparisons concordantly identify these two phylogroups as independent evolutionary lineages. Therefore, we herein restrict the name Eleutherodactylus glamyrus Estrada and Hedges to populations represented in our analyses as the western phylogroup (Cordillera del Turquino to Pico La Bayamesa) and consider specimens from the eastern phylogroup (Sierra del Cobre) to represent a new species described and named as Eleutherodactylus cattus. Our results add to the growing list of Eleutherodactylus species endemic to Cuba and highlight the importance of combining different sources of evidence for obtaining robust assessments of species limits in amphibians.

 

References

  1. Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
    https://doi.org/10.1109/TAC.1974.1100705

    AmphibiaWeb. (2016) AmphibiaWeb: information on amphibian biology and conservation. Berkeley. Available from: www.amphibiaweb.org (accessed September 2016).

    Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2006) Cryptic species as a window on biodiversity and conservation. Trends in Ecology and Evolution, 22, 148–155.
    https://doi.org/10.1016/j.tree.2006.11.004

    Bossuyt, F. & Milinkovitch, M.C. (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences USA, 97, 6585–6590.
    https://doi.org/10.1073/pnas.97.12.6585

    Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel, A.R. (Ed.) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp. 225–270.

    Dayrat, B. (2005) Toward integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.
    https://doi.org/10.1111/j.1095-8312.2005.00503.x

    de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886.
    https://doi.org/10.1080/10635150701701083

    Díaz, L.M. & Cádiz, A. (2008) Guía taxonómica de los anfibios de Cuba. ABC Taxa, 4, 1–294.

    Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García-Marquéz, J.R., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046.
    https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Estrada, A.R. & Hedges, S.B. (1997) A new species of frog from the Sierra Maestra, Cuba (Leptodactylidae: Eleutherodactylus). Journal of Herpetology, 31, 364–368.
    https://doi.org/10.2307/1565664

    Estrada, A.R. & Ruibal, R. (1999) A review of Cuban herpetology. In: Crother, B. (Ed.) Caribbean Amphibians and Reptiles. Academic Press, New York, pp. 31–62.
    https://doi.org/10.1016/B978-012197955-3/50014-8

    Fong, A. (2000) Anfibios y reptiles del macizo montañoso Sierra Maestra, Cuba: Composición, distribución y aspectos ecológicos. Biodiversidad de Cuba Oriental, 5, 124–132.

    Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M. & Gemmell, N.J. (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE, 2, e1109, 1–10.
    https://doi.org/10.1371/journal.pone.0001109

    Gridi-Papp, M. (2003) SoundRuler, acoustic analysis and graphing. Sourceforge

    Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
    https://doi.org/10.1080/10635150390235520

    Hanken, J. (1999) Why are there so many new amphibian species when amphibians are declining? Trends in Ecology and Evolution, 14, 7–8.
    https://doi.org/10.1016/S0169-5347(98)01534-1

    Hayek, L.-A.C., Heyer, W.R. & Gascon, C. (2001) Frog morphometrics: a cautionary tale. Alytes, 18, 153–177.

    Hedges, S.B. (1999) Distribution patterns of amphibians in the West Indies. In: Duellman, W.E. (Ed.) Patterns of distribution of amphibians: A global perspective. The Johns Hopkins University Press, Baltimore, USA, pp. 211–254.

    Hedges, S.B., Duellman, W.E. & Heinicke, M.P. (2008) New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1–182.

    Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.
    https://doi.org/10.1093/bioinformatics/17.8.754

    IUCN. (2016) Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-Committee, 101 pp. Available from: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed September 2016)

    Katz, A., Giordano, R. & Soto-Adames, F.N. (2015) Operational criteria for cryptic species delimitation when evidence is limited, as exemplified by North American Entomobrya (Collembola: Entomobryidae). Zoological Journal of the Linnean Society, 173, 818–840.
    https://doi.org/10.1111/zoj.12220

    Köhler, J., Vieites, D.R., Bonett, R.M., García, F.H., Glaw, F., Steinke, D. & Vences, M. (2005) New amphibians and global conservation: A boost in species discoveries in a highly endangered vertebrate group. BioScience, 55, 693–696.
    https://doi.org/10.1641/0006-3568(2005)055[0693:NAAGCA]2.0.CO;2

    Kuchta, S.R. & Wake, D.B. (2016) Wherefore and whither the ring species? Copeia, 104, 189–201.
    https://doi.org/10.1643/OT-14-176

    Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.
    https://doi.org/10.1093/molbev/mss020

    Librado, P. & Rozas, J. (2009) DnaSP V5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
    https://doi.org/10.1093/bioinformatics/btp187

    Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D. & Lefeuvre, P. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26, 2462–2463.
    https://doi.org/10.1093/bioinformatics/btq467

    Miralles, A. & Vences, M. (2013) New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE, 8, e68242.
    https://doi.org/10.1371/journal.pone.0068242

    Padial, J.M., Grant, T. & Frost, D.R. (2014) Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa, 3825 (1), 1–132.
    https://doi.org/10.11646/zootaxa.3825.1.1

    Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7.
    https://doi.org/10.1186/1742-9994-7-16

    Palumbi, S., Martin, A.P., Romano, S., MacMillan, W.O., Stice, L. & Grabowski, G. (2002) The simple fool's guide to PCR (Ver. 2). University of Hawaii Press, Honolulu.

    Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
    https://doi.org/10.1093/molbev/msn083

    Potrony, M., Mustelier, K. & Motito, A. (1994) Bioflora de la Sierra Maestra. Biodiversidad de Cuba Oriental, 2, Bioeco, Santiago de Cuba.

    R Core Team. (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Rambaut, A. & Drummond, A.J. (2007) Tracer: MCMC Trace Analysis Tool. Institute of Evolutionary Biology, University of Edinburgh

    Reyes, J.O. (1999) Clasificación de la vegetación de la Sierra Maestra. In: Atlas de Santiago de Cuba. Academia de Ciencias de Cuba, La Habana, pp. 1–13.

    Rodríguez, A. & Alonso, R. (2012) New localities for Eleutherodactylus glamyrus (Anura: Eleutherodactylidae) in Eastern Cuba. Herpetology Notes, 5, 293–295.

    Rodríguez, A., De la Nuez, D. & Alonso, R. (2010a) Intraspecific variation in the advertisement call of the cloud-forest frog Eleutherodactylus glamyrus (Anura: Eleutherodactylidae). Journal of Herpetology, 44, 457–466.
    https://doi.org/10.1670/09-038.1

    Rodríguez, A., Poth, D., Schulz, S., Gehara, M. & Vences, M. (2013) Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541–554.
    https://doi.org/10.1016/j.ympev.2013.04.031

    Rodríguez, A., Vences, M., Nevado, B., Machordom, A. & Verheyen, E. (2010b) Biogeographic origin and radiation of Cuban Eleutherodactylus of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 54, 179–186.
    https://doi.org/10.1016/j.ympev.2009.08.023

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
    https://doi.org/10.1093/bioinformatics/btg180

    Salzburger, W., Ewing, G.B. & von Haeseler, A. (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20, 1952–1963.
    https://doi.org/10.1111/j.1365-294X.2011.05066.x

    So, M.S.Y. (2001) Evolution of Mitochondrial DNA in the genus Salmo. MSc. Thesis, University of British Columbia, 93+ix pp.

    Stephens, M. & Donnelly, P. (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics, 73, 1162–1169.
    https://doi.org/10.1086/379378

    Stephens, M., Smith, N.J. & Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978–989.
    https://doi.org/10.1086/319501

    Stuart, B.L., Inger, R.F. & Voris, H.K. (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biology Letters.
    https://10.1098/rsbl.2006.0505.

    Sueur, J., Aubin, T. & Simonis, C. (2008) SeeWave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.
    https://doi.org/10.1080/09524622.2008.9753600

    Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Comm. Statist. Theory Methods, A7, 13–26.
    https://doi.org/10.1080/03610927808827599

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
    https://doi.org/10.1093/molbev/msr121

    Vieites, D.R., Wollenberg, K.C., Andreone, F., Köhler, J., Glaw, F. & Vences, M. (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences USA, 106, 8267–8272.
    https://doi.org/10.1073/pnas.0810821106

    Wells, K.D. (2007) The Ecology and Behavior of Amphibians. The University of Chicago Press, Chicago and London, 1148 pp.
    https://doi.org/10.7208/chicago/9780226893334.001.0001

    Wiens, J.J. & Penkrot, T.A. (2002) Delimiting species using DNA and morphological variation and discordant species limits in Spiny Lizards (Sceloporus). Systematic Biology, 51, 69–91.
    https://doi.org/10.1080/106351502753475880