Abstract
We studied the variation in genetics, bioacustics, and morphology in Eleutherodactylus glamyrus, a regionally endemic frog species restricted to high elevations in the Sierra Maestra Massif, Western Cuba that was originally described as a cryptic species hidden under the name E. auriculatus. Genetic analysis of mtDNA sequences of the 16S and cob genes identify two allopatric and strongly supported mitochondrial clades (phylogroups) which also showed no haplotype sharing in the nuclear Rag-1 gene. Bioacustic, and morphological comparisons concordantly identify these two phylogroups as independent evolutionary lineages. Therefore, we herein restrict the name Eleutherodactylus glamyrus Estrada and Hedges to populations represented in our analyses as the western phylogroup (Cordillera del Turquino to Pico La Bayamesa) and consider specimens from the eastern phylogroup (Sierra del Cobre) to represent a new species described and named as Eleutherodactylus cattus. Our results add to the growing list of Eleutherodactylus species endemic to Cuba and highlight the importance of combining different sources of evidence for obtaining robust assessments of species limits in amphibians.
References
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
https://doi.org/10.1109/TAC.1974.1100705AmphibiaWeb. (2016) AmphibiaWeb: information on amphibian biology and conservation. Berkeley. Available from: www.amphibiaweb.org (accessed September 2016).
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2006) Cryptic species as a window on biodiversity and conservation. Trends in Ecology and Evolution, 22, 148–155.
https://doi.org/10.1016/j.tree.2006.11.004Bossuyt, F. & Milinkovitch, M.C. (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences USA, 97, 6585–6590.
https://doi.org/10.1073/pnas.97.12.6585Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel, A.R. (Ed.) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp. 225–270.
Dayrat, B. (2005) Toward integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.
https://doi.org/10.1111/j.1095-8312.2005.00503.xde Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886.
https://doi.org/10.1080/10635150701701083Díaz, L.M. & Cádiz, A. (2008) Guía taxonómica de los anfibios de Cuba. ABC Taxa, 4, 1–294.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García-Marquéz, J.R., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046.
https://doi.org/10.1111/j.1600-0587.2012.07348.xEstrada, A.R. & Hedges, S.B. (1997) A new species of frog from the Sierra Maestra, Cuba (Leptodactylidae: Eleutherodactylus). Journal of Herpetology, 31, 364–368.
https://doi.org/10.2307/1565664Estrada, A.R. & Ruibal, R. (1999) A review of Cuban herpetology. In: Crother, B. (Ed.) Caribbean Amphibians and Reptiles. Academic Press, New York, pp. 31–62.
https://doi.org/10.1016/B978-012197955-3/50014-8Fong, A. (2000) Anfibios y reptiles del macizo montañoso Sierra Maestra, Cuba: Composición, distribución y aspectos ecológicos. Biodiversidad de Cuba Oriental, 5, 124–132.
Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M. & Gemmell, N.J. (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE, 2, e1109, 1–10.
https://doi.org/10.1371/journal.pone.0001109Gridi-Papp, M. (2003) SoundRuler, acoustic analysis and graphing. Sourceforge
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
https://doi.org/10.1080/10635150390235520Hanken, J. (1999) Why are there so many new amphibian species when amphibians are declining? Trends in Ecology and Evolution, 14, 7–8.
https://doi.org/10.1016/S0169-5347(98)01534-1Hayek, L.-A.C., Heyer, W.R. & Gascon, C. (2001) Frog morphometrics: a cautionary tale. Alytes, 18, 153–177.
Hedges, S.B. (1999) Distribution patterns of amphibians in the West Indies. In: Duellman, W.E. (Ed.) Patterns of distribution of amphibians: A global perspective. The Johns Hopkins University Press, Baltimore, USA, pp. 211–254.
Hedges, S.B., Duellman, W.E. & Heinicke, M.P. (2008) New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1–182.
Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.
https://doi.org/10.1093/bioinformatics/17.8.754IUCN. (2016) Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-Committee, 101 pp. Available from: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed September 2016)
Katz, A., Giordano, R. & Soto-Adames, F.N. (2015) Operational criteria for cryptic species delimitation when evidence is limited, as exemplified by North American Entomobrya (Collembola: Entomobryidae). Zoological Journal of the Linnean Society, 173, 818–840.
https://doi.org/10.1111/zoj.12220Köhler, J., Vieites, D.R., Bonett, R.M., García, F.H., Glaw, F., Steinke, D. & Vences, M. (2005) New amphibians and global conservation: A boost in species discoveries in a highly endangered vertebrate group. BioScience, 55, 693–696.
https://doi.org/10.1641/0006-3568(2005)055[0693:NAAGCA]2.0.CO;2Kuchta, S.R. & Wake, D.B. (2016) Wherefore and whither the ring species? Copeia, 104, 189–201.
https://doi.org/10.1643/OT-14-176Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.
https://doi.org/10.1093/molbev/mss020Librado, P. & Rozas, J. (2009) DnaSP V5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
https://doi.org/10.1093/bioinformatics/btp187Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D. & Lefeuvre, P. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26, 2462–2463.
https://doi.org/10.1093/bioinformatics/btq467Miralles, A. & Vences, M. (2013) New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE, 8, e68242.
https://doi.org/10.1371/journal.pone.0068242Padial, J.M., Grant, T. & Frost, D.R. (2014) Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa, 3825 (1), 1–132.
https://doi.org/10.11646/zootaxa.3825.1.1Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7.
https://doi.org/10.1186/1742-9994-7-16Palumbi, S., Martin, A.P., Romano, S., MacMillan, W.O., Stice, L. & Grabowski, G. (2002) The simple fool's guide to PCR (Ver. 2). University of Hawaii Press, Honolulu.
Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
https://doi.org/10.1093/molbev/msn083Potrony, M., Mustelier, K. & Motito, A. (1994) Bioflora de la Sierra Maestra. Biodiversidad de Cuba Oriental, 2, Bioeco, Santiago de Cuba.
R Core Team. (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rambaut, A. & Drummond, A.J. (2007) Tracer: MCMC Trace Analysis Tool. Institute of Evolutionary Biology, University of Edinburgh
Reyes, J.O. (1999) Clasificación de la vegetación de la Sierra Maestra. In: Atlas de Santiago de Cuba. Academia de Ciencias de Cuba, La Habana, pp. 1–13.
Rodríguez, A. & Alonso, R. (2012) New localities for Eleutherodactylus glamyrus (Anura: Eleutherodactylidae) in Eastern Cuba. Herpetology Notes, 5, 293–295.
Rodríguez, A., De la Nuez, D. & Alonso, R. (2010a) Intraspecific variation in the advertisement call of the cloud-forest frog Eleutherodactylus glamyrus (Anura: Eleutherodactylidae). Journal of Herpetology, 44, 457–466.
https://doi.org/10.1670/09-038.1Rodríguez, A., Poth, D., Schulz, S., Gehara, M. & Vences, M. (2013) Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541–554.
https://doi.org/10.1016/j.ympev.2013.04.031Rodríguez, A., Vences, M., Nevado, B., Machordom, A. & Verheyen, E. (2010b) Biogeographic origin and radiation of Cuban Eleutherodactylus of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 54, 179–186.
https://doi.org/10.1016/j.ympev.2009.08.023Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180Salzburger, W., Ewing, G.B. & von Haeseler, A. (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20, 1952–1963.
https://doi.org/10.1111/j.1365-294X.2011.05066.xSo, M.S.Y. (2001) Evolution of Mitochondrial DNA in the genus Salmo. MSc. Thesis, University of British Columbia, 93+ix pp.
Stephens, M. & Donnelly, P. (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics, 73, 1162–1169.
https://doi.org/10.1086/379378Stephens, M., Smith, N.J. & Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978–989.
https://doi.org/10.1086/319501Stuart, B.L., Inger, R.F. & Voris, H.K. (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biology Letters.
https://10.1098/rsbl.2006.0505.Sueur, J., Aubin, T. & Simonis, C. (2008) SeeWave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.
https://doi.org/10.1080/09524622.2008.9753600Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Comm. Statist. Theory Methods, A7, 13–26.
https://doi.org/10.1080/03610927808827599Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
https://doi.org/10.1093/molbev/msr121Vieites, D.R., Wollenberg, K.C., Andreone, F., Köhler, J., Glaw, F. & Vences, M. (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences USA, 106, 8267–8272.
https://doi.org/10.1073/pnas.0810821106Wells, K.D. (2007) The Ecology and Behavior of Amphibians. The University of Chicago Press, Chicago and London, 1148 pp.
https://doi.org/10.7208/chicago/9780226893334.001.0001Wiens, J.J. & Penkrot, T.A. (2002) Delimiting species using DNA and morphological variation and discordant species limits in Spiny Lizards (Sceloporus). Systematic Biology, 51, 69–91.
https://doi.org/10.1080/106351502753475880