Abstract
We present the complete mitochondrial (mt) genome sequence of the stonefly, Styloperla spinicercia Wu, 1935 (Plecoptera: Styloperlidae), the type species of the genus Styloperla and the first complete mt genome for the family Styloperlidae. The genome is circular, 16,129 base pairs long, has an A+T content of 70.7%, and contains 37 genes including the large and small ribosomal RNA (rRNA) subunits, 13 protein coding genes (PCGs), 22 tRNA genes and a large non-coding region (CR). All of the PCGs use the standard initiation codon ATN except ND1 and ND5, which start with TTG and GTG. Twelve of the PCGs stop with conventional terminal codons TAA and TAG, except ND5 which shows an incomplete terminator signal T. All tRNAs have the classic clover-leaf structures with the dihydrouridine (DHU) arm of tRNASer(AGN) forming a simple loop. Secondary structures of the two ribosomal RNAs are presented with reference to previous models. The structural elements and the variable numbers of tandem repeats are described within the control region. Phylogenetic analyses using both Bayesian (BI) and Maximum Likelihood (ML) methods support the previous hypotheses regarding family level relationships within the Pteronarcyoidea. The genetic distance calculated based on 13 PCGs and two rRNAs between Styloperla sp. and S. spinicercia is provided and interspecific divergence is discussed.
References
Abascal, F., Zardoya, R. & Telford, M.J. (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38, 7–13.
https://doi.org/10.1093/nar/gkq291Altschup, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
https://doi.org/10.1016/S0022-2836(05)80360-2Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27, 573–580.
https://doi.org/10.1093/nar/27.2.573Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117.
https://doi.org/10.1146/annurev-ento-011613-162007Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408, 112–123.
https://doi.org/10.1016/j.gene.2007.10.023Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.
https://doi.org/10.1093/oxfordjournals.molbev.a026334Chen, Z.T. & Du, Y.Z. (2015) Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies. Gene, 558 (1), 82–87.
https://doi.org/10.1016/j.gene.2014.12.049Chen, Z.T., Wu, H.Y. & Du, Y.Z. (2016) The nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae). Mitochondrial DNA Part A, 27, 2728–2729.
Dai, X., Xun, H.Z., Chang, J., Zhang, J.G., Hu, B.W., Li, H., Yuan, X.Q. & Cai, W.Z. (2012) The complete mitochondrial genome of the plant bug Nesidiocoris tenuis (reuter)(Hemiptera: Miridae: Bryocorinae: Dicyphini). Zootaxa, 3554, 30–44.
Elbrecht, V. & Leese, F. (2015) The mitochondrial genome of the Arizona Snowfly Mesocapnia arizonensis (Plecoptera, Capniidae). Mitochondrial DNA, 27 (5), 1–2.
https://doi.org/10.3109/19401736.2015.1018223Elbrecht, V., Poettker, L., John, U. & Leese, F. (2015) The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae). Mitochondrial DNA, 26, 469–470.
https://doi.org/10.3109/19401736.2013.830301Gao, J.Y., Li, H., Truong, X.L., Dai, X., Chang, J. & Cai, W.Z. (2013) Complete nucleotide sequence and organization of the mitochondrial genome of Sirthenea flavipes (Hemiptera: Reduviidae: Peiratinae) and comparison with other assassin bugs. Zootaxa, 3669 (1), 1–16.
https://doi.org/10.11646/zootaxa.3669.1.1Hall, T.A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hebert, P.D.N., Ratnasingham, S. & DeWaard, J.R. (2003) Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society Biological Sciences, 270 (Supplement), S96–S99.
https://doi.org/10.1098/rsbl.2003.0025Huang, M.C., Wang, Y.Y., Liu, X.Y., Li, W.H., Kang, Z.H., Wang, K., Li, X.K. & Yang, D. (2015) The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acroneuria hainana Wu (Insecta: Plecoptera, Perlidae). Gene, 557, 52–60.
https://doi.org/10.1016/j.gene.2014.12.009Illies, J. (1966) Katalog der rezenten Plecoptera, In Das Tierreich, 82. Walter de Gruyter and Company Press, Berlin, xxx + 632 pp.
James, B.S. & Andrew, T.B. (2006) Insect mitochondrial genomics 2: the complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A + T-region elements. Genome, 49, 815–824.
https://doi.org/10.1139/G06-037Johns, G.C. & Avise, J.C. (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15, 1481–1490.
https://doi.org/10.1093/oxfordjournals.molbev.a025875Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
https://doi.org/10.1093/molbev/mst010Kearse, M., Richard, M., Amy, W., Steven, S.H., Matthew, C., Shane, S., Simon, B., Alex, C., Sidney, M., Chris, D., Tobias, T., Bruce, A., Peter, M. & Alexei, D. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649.
https://doi.org/10.1093/bioinformatics/bts199Li, H., Liu, H., Shi, A.M., Štys, P., Zhou, X.G. & Cai, W.Z. (2012a) The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS ONE, 7, e29419.
https://doi.org/10.1371/journal.pone.0029419Li, H., Liu, H.Y., Cao, L.M. & Cai, W.Z. (2012b) The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri (Hemiptera: Nabidae). International Journal of Biological Sciences, 8 (1), 93–107.
https://doi.org/10.7150/ijbs.8.93Li, H., Shao, R., Song, F., Zhou, X.G., Yang, Q.Q., Li, Z.H. & Cai, W.Z. (2013) Mitochondrial genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS ONE, 8, e61685.
https://doi.org/10.1371/journal.pone.0061685Lohse, M., Bolger, A.M., Nagel, A., Fernie, A.R., Lunn, J.E., Stitt, M. & Usadel, B. (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seqbased transcriptomics. Nucleic Acids Research, 40, W622–W627.
https://doi.org/10.1093/nar/gks540Lowe, T.M. & Eddy, S.R. (1997) tRNAscan–SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.
https://doi.org/10.1093/nar/25.5.0955McMahon, D.P., Hayward, A. & Kathirithamby, J. (2009) The mitochondrial genome of the 'twisted-wing parasite' Mengenilla australiensis (Insecta, Strepsiptera): a comparative study. BMC Genomics, 10, 603.
https://doi.org/10.1186/1471-2164-10-603Park, D.S., Foottit, R., Maw, E. & Hebert, P.D. (2011) Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). PLoS ONE, 6, e29419.
https://doi.org/10.1371/journal.pone.0018749Peng, Y., Leung, H.C.M., Yiu, S.M. & Chin, F.Y.L. (2012) IBDA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28, 1420–1428.
https://doi.org/10.1093/bioinformatics/bts174Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at four-fold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358.
https://doi.org/10.1007/BF01215182Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
https://doi.org/10.1093/molbev/msn083Qian, Y.H., Wu, H.Y., Ji, X.Y., Yu, W.W. & Du, Y.Z. (2014) Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of Plecoptera based on mitogenomes. PLoS ONE, 9 (1), e86328–e86328.
https://doi.org/10.1371/journal.pone.0086328Ronquist, F., Teslenko, M., van der Mark, P.V.D., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
https://doi.org/10.1093/sysbio/sys029Shi, A.M., Li, H., Bai, X.S., Dai, X., Chang, J., Guilbert, E. & Cai, W.Z. (2012). The complete mitochondrial genome of the flat bug Aradacanthia heissi (Hemiptera: Aradidae). Zootaxa, 3238, 23–38.
Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology and Systematics, 37, 545–579.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110018Sproul, J.S., Houston, D.D., Nelson, C.R., Evans, P., Crandall, K.A. & Shiozawa, D.K. (2015) Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia, (Plecoptera), in Western North America. BMC Evolutionary Biology, 15 (1), 1–18.
https://doi.org/10.1186/s12862-015-0553-4Stamatakis, A. (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.
https://doi.org/10.1093/bioinformatics/btl446Stark, B.P. & Sivec, I. (2007) A Synopsis of Styloperlidae (Insecta, Plecoptera) with description of Cerconychia sapa, a new stonefly from Vietnam. Illiesia, 3, 10–16.
Stewart, K.W. & Stark, B.P. (2008) Chapter 14, Plecoptera. In: Merritt, R.W., Cummins, K.W. & Berg M.B. (Eds.), An introduction to the aquatic insects of North America. 4th Edition. Kendall–Hunt Publishing Company, Dubuque, Iowa, 1158 pp.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
https://doi.org/10.1093/molbev/msr121Terry, M.D. & Whiting, M.F. (2003) Phylogeny of Plecopter: molecular evidence and evolutionary trends. Entomologische Abhandlungen, 61, 130–131.
Timmermans, M.J. & Vogler, A.P. (2012) Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Molecular Phylogenetics and Evolution, 63, 299–304.
https://doi.org/10.1016/j.ympev.2011.12.021Uchida, S. & Isobe, Y. (1989) Styloperlidae, stat. nov. and Microperlinae, subfam. nov. with a revised system of the family group Systellognatha (Plecoptera). Spixiana, 12, 145–182.
Wang, K., Ding, S.M. & Yang, D. (2016a) The complete mitochondrial genome of a stonefly species, Kamimuria chungnanshana Wu, 1948 (Plecoptera: Perlidae), Mitochondrial DNA Part A, 27, 3810–3811.
https://doi.org/10.3109/19401736.2015.1082088Wang, K., Wang, Y.Y. & Yang, D. (2016b) The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae), Mitochondrial DNA Part A, 27, 1703–1704.
Wang, Y., Li, H., Wang, P., Song, F. & Cai, W.Z. (2014) Comparative mitogenomics of plant bugs (Hemiptera: Miridae): identifying the AGG codon reassignments between serine and lysine. PLoS ONE, 9 (7), e101375.
https://doi.org/10.1371/journal.pone.0101375Wang, Y.Y., Liu, X.Y., Winterton, S.L., Yan, Y., Chang W.C. & Yang, D. (2013) Comparative Mitogenomic Analysis Reveals Sexual Dimorphism in a Rare Montane Lacewing (Insecta: Neuroptera: Ithonidae). PLoS ONE, 8 (12), e83986–e83986.
https://doi.org/10.1371/journal.pone.0083986Wolstenholme, D.R. (1992) Genetic novelties in mitochondrial genomes of multicellular animals. Current Opinion in Genetics & Development, 2, 918–925.
https://doi.org/10.1016/S0959-437X(05)80116-9Wu, C.F. (1935) New species of stoneflies from East and South China. Bulletin of the Peking Society of National History, 9, 227–243.
Wu, C.F. (1938) Plecopterorum sinensium: A monograph of the stoneflies of China (Order Plecoptera). Yenching University, Beijing, 225 pp.
Wu, C.F. (1962) Results of the Zoologico-Botanical expedition to Southwest China, 1955-1957 (Plecoptera). Acta Entomologica Sinica, 11 (Supplement), 139–153.
Wu, H.Y., Ji, X.Y., Yu, W.W. & Du, Y.Z. (2014) Complete mitochondrial genome of the stonefly Cryptoperla stilifera Sivec (Plecoptera: Peltoperlidae) and thephylogeny of Polyneopteran insects. Gene, 537, 177–183.
https://doi.org/10.1016/j.gene.2013.12.044Zhou, C.G., Tan, M. H., Du, S.Y., Zhang, R., Machida, R. & Zhou, X. (2016) The mitochondrial genome of the winter stonefly Apteroperla tikumana (Plecoptera, Capniidae). Mitochondrial DNA Part A, 27, 3030–3032.
Zwick, P. (2000) Phylogenetic system and zoogeography of the Plecoptera. Annual Review of Entomology, 45, 709–746.
https://doi.org/10.1146/annurev.ento.45.1.709Zwick, P. (2009) The Plecoptera–who are they? The problematic placement of stoneflies in the phylogenetic system of insects. Aquatic insects, 31 (Supplement), 181–194.
https://doi.org/10.1080/01650420802666827