Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-04-10
Page range: 541–559
Abstract views: 98
PDF downloaded: 1

Uncovering the hidden biodiversity of natural history collections: Insights from DNA barcoding and morphological characters of the Neotropical genus Orthocomotis Dognin (Lepidoptera: Tortricidae)

Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Poland.
Bonnenweg 3, D-503809 Ruppichteroth, Germany.
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków 31-016, Sławkowska 17, Poland.
Lepidoptera COI mtDNA genitalia interspecific relationships morpho-molecular study phylogenetic network species discrimination

Abstract

We used a 227-bp fragment of the mitochondrial gene cytochrome oxidase I (DNA “barcode”) in conjunction with morphological data to study specimens of the Neotropical genus Orthocomotis Dognin, 1906, acquired from natural history collections. We examined over 20 species of Orthocomotis from 17 localities in Colombia, Ecuador, and Peru. The analysis identified 32 haplotypes among the 62 specimens and found no haplotypes shared among species. The molecular study revealed not only the usefulness of short COI sequences in discriminating among Orthocomotis species but also showed distinctness of four clusters which correspond to those based on morphological (genitalia) characters. Moreover, the molecular results suggest the occurrence of rapid speciation in Orthocomotis. We hypothesize that this may be linked to the great biodiversity of potential host plants in Neotropical ecosystems.

 

References

  1. Andersen, J.C. & Mills, N.J. (2012) DNA extraction from museum specimens of parasitic Hymenoptera. PLoS ONE, 7, e45549.
    https://doi.org/10.1371/journal.pone.0045549

    Antonelli, A. & Sanmartín, I. (2011) Why are there so many plant species in the Neotropics? Taxon, 60, 403–414.

    Barth, D., Przyboś, E., Fokin, S.I., Schlegel, M. & Berendonk, T.U. (2008) Cytochrome b sequence data suggest rapid speciation within the Paramecium aurelia species complex. Molecular Phylogenetics and Evolution, 49, 669–673.
    https://doi.org/10.1016/j.ympev.2008.08.007

    Bartkowski, B., Lienhoop, N. & Hansjürgens, B. (2015) Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity. Ecological Economics, 113, 1–14.
    https://doi.org/10.1016/j.ecolecon.2015.02.023

    Beheregaray, L.B. & Caccone, A. (2007) Cryptic biodiversity in a changing world. Journal of Biology, 6, 9.
    https://doi.org/10.1186/jbiol60

    Brown, J.W. (1989) New tribal Assignment for Orthocomotis Dognin and Paracomotis Razowski based on an unusual modification of the chaetosema (Lepidoptera: Tortricidae). Pan-Pacific Entomologist, 65, 454–457.

    Brown, J.W. (2003) An illustrated guide to the Orthocomotis Dognin (Tortricidae) of Costa Rica, with summaries of their spatial and temporal distribution. Journal of the Lepidopterologists’ Society, 57 (4), 253–296.

    Brown, J.W. (2005) Tortricidae (Lepidoptera). In: World Catalogue of Insects. Vol.5. Apollo Books, Stenstrup, pp. 1–741.

    Brown, J.W., Robinson, G. & Powell, J.A. (2008) Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae) (Version 1.0). Available from: http://www.tortricidae.com/foodplants.asp (accessed 20 September 2016)

    Brown, J.W., Janzen, D.H., Hallwachs, W., Zahiri, R., Haibabaei, M. & Hebert, P.D.N. (2014) Cracking complex taxonomy of Costa Rican moths Anacrusis Zeller (Lepidoptera: Tortricidae: Tortricinae). Journal of the Lepidopterist's Society, 68 (4), 248–263.
    https://doi.org/10.18473/lepi.v68i4.a3

    Bryant, D. & Moulton, V. (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.
    https://doi.org/10.1093/molbev/msh018

    Chambers, E.A. & Hebert, P.D.N. (2016) Assessing DNA barcodes for species identification in North American reptiles and amphibians in natural history collections. PLoS ONE, 11 (4), e0154363.
    https://doi.org/10.1371/journal.pone.0154363

    Chapple, D.G. & Ritchie, P.A. (2013) A retrospective approach to testing the DNA barcoding method. PLoS ONE, 8 (11), e77882.
    https://doi.org/10.1371/journal.pone.0077882

    Chaves, B.R.N., Chaves, A.V., Nascimento, A.C.A., Chevitarese, J., Vasconcelos, M.F. & Santos, F.R. (2015) Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group. Molecular Ecology Resources, 15, 921–931.
    https://doi.org/10.1111/1755-0998.12344

    Clarke, J.F.G. (1956) Neotropical moths of the genus Orthocomotis Dognin (Lepidoptera: Tortricidae). Transactions of the Royal Entomological Society London, 107 (1955), 139–168.
    https://doi.org/10.1111/j.1365-2311.1955.tb00469.x

    Costello, M.J., May, R.M. & Stork, N.E. (2013) Can we name earth’s species before they go extinct? Science, 339, 413–416.
    https://doi.org/10.1126/science.1230318

    Dabert, M., Bigos, A. & Witalinski, W. (2011) DNA barcoding reveals andropolymorphism in Aclerogamasus species (Acari: Parasitidae). Zootaxa, 3015, 13–20.

    Dyer, L.A., Singer, M.S., Lill, J.T., Sitreman, J.O., Gentry, G.L. & Marquis, R.J. (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696–699.
    https://doi.org/10.1038/nature05884

    Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.
    https://doi.org/10.1007/bf01734359

    Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.
    https://doi.org/10.2307/2408678

    Gaubert, P., Papes¸ M. & Peterson, A.T. (2006) Natural history collections and the conservation of poorly known taxa: ecological niche modeling in central African rainforest genets (Genetta spp.). Biological Conservation, 130, 106–117. ttp://dx.doi.org/10.1016/j.biocon.2005.12.006

    Gilligan, T.M., Baixeras, J., Brown, J.W. & Tuck, K.R. (2014) T@RTS: Online World Catalogue of the Tortricidae (Ver. 3.0). Available from: http://www.tortricidae.com/catalogue.asp (accessed 20 September 2016)

    Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. & Hebert, P.D.N. (2006a) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103, 968–971. https://doi.org/10.1073/pnas.0510466103

    Hajibabaei, M., Smith, M.A., Janzen, D.H., Rodriguez, J.J., Whitfield, J.B. & Hebert, P.D.N. (2006b) A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes, 6, 959–964.
    https://doi.org/10.1111/j.1471-8286.2006.01470.x

    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    Han, T., Lee, W., Lee, Y., Kim, N., Lee, S. & Park, H. (2014) Barcoding old Korean lepidopteran specimens using newly designed specific primer pairs. Journal of Asia-Pacific Entomology, 17 (4), 679–684.
    https://doi.org/10.1016/j.aspen.2014.06.007

    Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270, 313–321.
    https://doi.org/10.1098/rspb.2002.2218

    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.
    https://doi.org/10.1073/pnas.0406166101

    Hebert, P.D.N., deWaard, J.R., Zakharov, E.V., Prosser, S.W.J., Sones, J.E., McKeown, J.T.A., Mantle, B., & La Salle, J. (2013) A DNA ‘Barcode Blitz’: Rapid digitization and sequencing of a natural history collection. PLoS ONE, 8 (7), e68535.
    https://doi.org/10.1371/journal.pone.0068535

    Horak, M. (1984) Assessment of taxonomically significant structures in the Tortricinae (Lep.: Tortricidae). Mitteilungen der schweizerischen entomologischen Gesellschaft 57, 3–64.

    Huson, D.H. & Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.
    https://doi.org/10.1093/molbev/msj030

    Janzen, D.H., Hajibabaei, M., Burns, J.M., Hallwachs, W., Remigio, E. & Hebert, P.D.N. (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society of London, Series B, 360, 1835–45.
    https://doi.org/10.1098/rstb.2005.1715

    Karthika, P., Vadivalagan, C., Gunasekaran, C. & Anandhakumar, S. (2012) DNA barcoding of selected dragonfly species (Libellulidae and Aeshnidae) for species authentication with phylogenetic assessment. European Journal of Experimental Biology, 2 (6), 2158–2165.

    Kekkonen, M. & Hebert, P.D.N. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources, 14, 706–715.
    https://doi.org/10.1111/1755-0998.12233

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
    https://doi.org/10.1007/bf01731581

    Kosakyan, A., Gomaa, F., Mitchell, E.A.D., Heger, T.J. & Lara, E. (2013) Using DNA-barcoding for sorting out protist species complexes – a case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae). European Journal of Protistology, 49, 222–237.
    https://doi.org/10.1016/j.ejop.2012.08.006

    Lebonah, D.E., Dileep, A., Chandrasekhar, K., Sreevani, S., Sreedevi, B. & Pramoda Kumari, J. (2014) DNA Barcoding on Bacteria: A Review. Advances in Biology, 2014 (Article ID 541787), 1–9.
    https://doi.org/10.1155/2014/541787

    Li, X., Yang, Y., Henry, R.J., Rossetto, M., Want, Y. & Chen, S. (2015) Plant DNA barcoding: from gene to genome. Biological Reviews, 90, 157–166.
    https://doi.org/10.1111/brv.12104

    Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
    https://doi.org/10.1093/bioinformatics/btp187

    Lister, A.M., Brooks, S.J, Fenberg, P.B, Glover, A.G., James, K.E. & Johnson, K.G. (2011) Natural history collections as sources of long-term datasets. Trends in Ecology and Evolution, 26, 153–154.
    https://doi.org/10.1016/j.tree.2010.12.009

    Mandrioli, M., Borsatti, F. & Mola, L. (2006) Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomologia Experimentalis et Applicata, 120, 239–244.
    https://doi.org/10.1111/j.1570-7458.2006.00451.x

    Meiklejohn, K.A., Wallman, J.F. & Dowton, M. (2013) DNA barcoding identifies all immature life stages of a forensically important flesh fly (Diptera: Sarcophagidae). Journal of Forensic Sciences, 58, 184–187.
    https://doi.org/0.1111/j.1556-4029.2012.02220.x

    Meusnier, I., Singer, G.A., Landry, J.F., Hickey, D.A., Hebert, P.D.N. & Hajibabaei, M. (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 9, 214. [Please cite all the names of authors]
    https://doi.org/10.1186/1471-2164-9-214

    Mitchell, A. (2015) Collecting in collections: a PCR strategy and primer set for DNA barcoding of decades-old dried museum specimens. Molecular Ecology Resources, 15, 1102–1111.
    https://doi.org/10.1111/1755-0998.12380

    Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B. & Worm, B. (2011) How many species are there on earth and in the ocean? PLoS Biology, 9 (8), e1001127.
    https://doi.org/10.1371/journal.pbio.1001127

    Mullen, S.P., Savage, W.K., Wahlberg, N. & Willmott, K. R. (2011) Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proceedings of the Royal Society of London B, 278, 1777–1785.
    https://doi.org/10.1098/rspb.2010.2140

    Mutanen, M., Kekkonen, M., Prosser, S.W.J., Hebert, P.D.N. & Kaila, L. (2014) One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources, 15, 967–84.
    https://doi.org/10.1111/1755-0998.12361

    Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York, 352 pp.

    Nieukerken, E.J. van, Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., Mitter, C., Mutanen, M., Regier, J.C., Simonsen, T.J., Wahlberg, N., Yen, S-H., Zahiri, R., Adamski,

    D., Baixeras, J., Bartsch, D., Bengtsson, B.A., Brown, J.W., Bucheli, S.R., Davis D.R., De Prins, J., De Prins, W., Epstein, M.E., Gentili-Poole, P., Gielis, C., Hättenschwiler, P., Hausmann, A., Holloway, J.D., Kallies, A., Karsholt, O., Kawahara, A.Y., Koster, S.(J.C.), Kozlov, M.V., Lafontaine, J.D., Lamas, G., Landry, J-F., Lee, S., Nuss, M., Park, K-T., Penz,

    C., Rota, J., Schintlmeister, A., Schmidt, B.C., Sohn, J.-C., Solis, M.A., Tarmann, G.M., Warren, A.D., Weller, S., Yakovlev, R.V., Zolotuhin, V.V. & Zwick, A. (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 1–237.

    Novotny, V., Drozd, P., Miller, S.E., Kulfan, M., Janda, M., Basset, Y. (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science, 313, 1115–1118.

    https://doi.org/10.1126/science.1139702

    Page, R.D.M. (1996) TreeView: An application to display phylogenetic tress on personal computers. Bioinformatics, 12, 357–358.
    https://doi.org/10.1093/bioinformatics/12.4.357

    Powell, A.J. (1986) Synopsis of the classification of Neotropical Tortricinae, with description of new genera and species (Lepidoptera: Tortricidae). Pan-Pacific Entomologist, 62, 372–398.

    Paz, A, & Crawford, A.J. (2012) Molecular-based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography-based vs. clade-based sampling of amphibians. Journal of Biosciences, 37, 887–896. https://doi.org/10.1007/s12038-012-9255-x

    Price, B.W., Henry, C.S., Hall, A.C., Mochizuki, A., Duelli, P. & Brooks, S.J. (2015) Singing from the Grave: DNA from a 180 Year Old Type Specimen Confirms the Identity of Chrysoperla carnea (Stephens). PLoS ONE, 10 (4), e0121127.
    https://doi.org/10.1371/journal.pone.0121127

    Prosser, S.W., deWaard, J.R., Miller, S.E. & Hebert, P.D. (2016) DNA barcodes from century-old type specimens using next generation sequencing. Molecular Ecology Resources, 16, 487–497.
    https://doi.org/10.1111/1755-0998.12474

    Radulovici, A.E., Archambault, P. & Dufresne, F. (2010) DNA Barcodes for Marine Biodiversity: Moving Fast Forward? Diversity, 2, 450–472.
    https://doi.org/10.3390/d2040450

    Razowski, J. (1982) Notes on Orthocomotis Dognin (Lepidoptera: Tortricidae) with descriptions of new taxa. Bulletin of the Polish Academy of Sciences (Natural Sciences), 30, 29–36.

    Razowski, J. (2008) Tortricidae of the Palaearctic Region. Vol. 1. Tortricini and General Part. Bratislava, Kraków, 152 pp. [Slamka, F. (Ed.)]

    Razowski, J., Pelz, V. & Wojtusiak, J. (2007) Orthocomotis Dognin, 1905 (Lepidoptera: Tortricidae) from Ecuador. Acta zoologica cracoviensia, 50B (2), 1–25.
    https://doi.org/10.3409/000000007783995110

    Razowski, J. & Wojtusiak, J. (2009) Tortricidae (Lepidoptera) from the mountains of Ecuador and remarks on their geographical distribution. Part IV: Eastern Cordillera. Acta zoologica cracoviensia, 51B (1-2), 110–187.
    https://doi.org/10.3409/azc.52b_1-2.119-187

    Razowski, J., Tarcz, S., Wojtusiak, J. & Pelz, V. (2013) Reassessment of the systematic position of Orthocomotis Dognin (Lepidoptera: Tortricidae) based on molecular data with description of new species of Euliini. Folia biologica (Kraków), 61 (1–2), 125–134.
    https://doi.org/10.3409/fb61_1-2.125

    Regier, J.C., Brown, J.W., Mitter, C., Baixeras, J., Cho, S., Cummings, M.P. & Zwick, A. (2012) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS ONE, 4 (e35574), 1–17.

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
    https://doi.org/10.1093/bioinformatics/btg180

    Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Schroeder, H. & Degen, B. (2008) Genetic structure of the green oak leaf roller (Tortrix viridana L.) and one of its hosts, Quercus robur L. Forest Ecology and Management, 256, 1270–1279.
    https://doi.org/10.1016/j.foreco.2008.06.051

    Seifert, C.L., Bodner, F., Brehm, G. & Fiedler, K. (2015) Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae). Journal of Insect Science, 15, 119.
    https://doi.org/10.1093/jisesa/iev098

    Slowik, J. & Blagoev, G.A. (2012) First description of the male spider Pacifiphantes magnificus (Chamberlin & Ivie) (Araneae: Linyphiidae). Zootaxa, 3481, 73–81.

    Strutzenberger, P., Brehm, G. & Fiedler, K. (2012) DNA barcode sequencing from Old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae). PLoS ONE, 7, e49710.
    https://doi.org/10.1371/journal.pone.0049710

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
    https://doi.org/10.1093/molbev/mst197

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–80.
    https://doi.org/10.1093/nar/22.22.4673

    Timm, A.E., Geertsema, H. & Warnich, L. (2010) Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis. Bulletin of Entomological Research, 100, 421–431.
    https://doi.org/10.1017/s0007485309990435

    Tundisi, J.G. & Matsumura-Tundisi, T. (2008) Biodiversity in the Neotropics: ecological, economic and social values. Brazilian Journal of Biology, 68 (Supplement 4), 913–915.
    https://doi.org/10.1590/S1519-69842008000500002

    Watts, P.C., Thompson, D.J., Allen, K.A. & Kemp, S.J. (2007) How useful is DNA extracted from the legs of archived insects for micro-satellite-based population genetic analyses? Journal of Insect Conservation, 11, 195–198.
    https://doi.org/10.1007/s10841-006-9024-y

    Waugh, J. (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays, 29, 188–197.
    https://doi.org/10.1002/bies.20529

    Wilson, J.J. (2012) DNA barcodes for insects. In: Kress, W.J. & Erickson, D.L. (Eds.), DNA barcodes: methods and protocols. Methods and Molecular Biology. Humana Press, New York, pp. 17–46.
    https://doi.org/10.1007/978-1-61779-591-6_3

    Willows-Munro, S. & Schoeman, M.C. (2014) Influence of killing method on Lepidoptera DNA barcode recovery. Molecular Ecology Resources, 15, 613–618.
    https://doi.org/10.1111/1755-0998.12331

    Zuckerkandl, E. & Pauling, L. (1965) Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366.
    https://doi.org/10.1016/0022-5193(65)90083-4