Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-07-10
Page range: 503–518
Abstract views: 138
PDF downloaded: 3

Intrapopulational variation in color pattern of Trichomycterus davisi (Haseman, 1911) (Siluriformes: Trichomycteridae) corroborated by morphometrics and molecular analysis

Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Rodovia Celso Garcia Cid, Campus Universitário, 86057-970, Londrina, PR, Brazil.
Departamento de Biologia Geral, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Rodovia Celso Garcia Cid, Campus Universitário, 86057-970, Londrina-PR, Brazil.
Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Rodovia Celso Garcia Cid, Campus Universitário, 86057-970, Londrina, PR, Brazil.
Departamento de Biologia Geral, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Rodovia Celso Garcia Cid, Campus Universitário, 86057-970, Londrina-PR, Brazil.
Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Rodovia Celso Garcia Cid, Campus Universitário, 86057-970, Londrina, PR, Brazil.
Pisces Catfish DNA barcoding Multivariate morphometric analysis Taxonomy

Abstract

Color patterns of the body are commonly used to distinguish and identify species of Trichomycterus. Therefore, variation in color pattern in a population can cause doubt concerning species identification. With the purpose to test the hypothesis of high variation in color pattern of Trichomycterus davisi (Haseman, 1911), 118 specimens were collected in a stream of a private Ecological Park in southern Brazil, of which 88 were used in the morphological analysis and 30 for DNA barcoding analysis. Three phenotypic classes were determined analyzing the distribution, size and shape of dark brown spots and blotches. The results of morphometric analysis indicate a tendency of association of those pigmentation patterns with the standard length, evidencing ontogenetic variation of color pattern in the species. The results of K2P intraspecific genetic distance (<0.72%), haplotypes network and Bayesian phylogenetic tree corroborate the existence of only one species with a high variable color pattern.

 

References

  1. Arratia, G. (1983) Trichomycterus chungaraensis n. sp. and Trichomycterus laucaensis n. sp. (Pisces, Siluriformes, Trichomycteridae) from the high Andean range. Studies on Neotropical Fauna and Environment, 18 (2), 65–87.
    https://doi.org/10.1080/01650528309360621

    Arratia, G., Chang, A., Menu-Marque, S. & Rojas, G. (1978) About Bullockia gen. nov., Trichomycterus mendozensis n. sp. and revision of the family Trichomycteridae (Pisces, Siluriformes). Studies on Neotropical Fauna and Environment, 13 (3–4), 157–194.
    https://doi.org/10.1080/01650527809360539

    Arratia, G. & Menu-Marque, S. (1981) Revision of the freshwater catfishes of the genus Hatcheria (Siluriformes, Trichomycteridae) with commentaries on ecology and biogeography. Zoologischer Anzeiger, 207 (1–2), 88–111.

    Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.
    https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Bermingham, E., McCafferty, S.S. & Martin, A.P. (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher, T.D. & Stepien, C.A. (Ed.), Molecular systematics of fishes, Academic Press, San Diego, CA, pp. 113–128.

    Bockmann, F.A. & Sazima, I. (2004) Trichomycterus maracaya, a new catfish from the upper rio Paraná, southeastern Brazil (Siluriformes: Trichomycteridae), with notes on the T. brasiliensis species-complex. Neotropical Ichthyology, 2 (2), 61–74.
    https://doi.org/10.1590/s1679-62252004000200003

    Calegari, B.B., Delapieve, Sousa, L.M. (2016) Tutorial para preparação de mapas de distribuição geográfica. Boletim Sociedade Brasileira de Ictiologia, 118, 15–30.

    Castellanos-Morales, C.A. (2007) Trichomycterus santanderensis: a new species of troglomorphic catfish (Siluriformes, Trichomycteridae) from Colombia. Zootaxa, 1541, 49–55.

    Datovo, A. & Bockmann, F.A. (2010) Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis. Neotropical Ichthyology, 8 (2), 193–246.
    https://doi.org/10.1590/s1679-62252010000200001

    Datovo, A., Carvalho, M. & Ferrer, J. (2012) A new species of the catfish genus Trichomycterus from the La Plata River basin, southern Brazil, with comments on its putative phylogenetic position (Siluriformes: Trichomycteridae). Zootaxa, 3327, 33–44.

    De Pinna, M.C.C. (1998) Phylogenetic relationships of Neotropical Siluriformes: historical overview and synthesis of hypotheses. In: Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S. & Lucena, C.A.S. (Eds.), Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, pp. 279–330.

    De Pinna, M.C. & Wosiacki, W.B. (2003) Family Trichomycteridae. In: Reis, R.E., Kullander, S.O. & Ferraris, C.J. (Eds.),Check List of Freshwater Fishes of South and Central America, EDIPUCRS, Porto Alegre, pp. 270–290.

    Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
    https://doi.org/10.1093/molbev/mss075

    Drummond, A.J. & Bouckaert, R.R. (2015) Bayesian evolutionary analysis with BEAST. Cambridge University Press. Available from: https://www.cambridge.org/core/books/bayesian-evolutionary-analysis-with-beast/81F5894F05E87F13C688ADB00178EE00 (accessed 12 June 2017)

    Eigenmann, C.H. (1917) Descriptions of sixteen new species of Pygidiidae. Proceedings of the American Philosophical Society, 56, 690–703.

    Eschmeyer, W.N. & Fong, J.D. (2017) Species of Fishes by family/subfamily. Available from: http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 13 April 2017).

    Ferrer, J. & Malabarba, L.R. (2013) Taxonomic review of the genus Trichomycterus Valenciennes (Siluriformes: Trichomycteridae) from the laguna dos Patos system, Southern Brazil. Neotropical Ichthyology, 11 (2), 217–246.
    https://doi.org/10.1590/s1679-62252013000200001

    Frantine-Silva, W., Sofia, S.H., Orsi, M.L. & Almeida, F.S. (2015) DNA barcoding of freshwater ichthyoplankton in the Neotropics as a tool for ecological monitoring. Molecular Ecology Resources, 15 (5), 1226–1237.
    https://doi.org/10.1111/1755-0998.12385

    Froese, R. & Pauly, D. (2017) FishBase. Available from: http://www.fishbase.org (accessed 24 April 2017)

    Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P.M. & Hebert, P.D. (2005) Critical factors for assembling a high volume of DNA barcodes. Philosophical transactions of the Royal Society of London, Series B, Biological Sciences, 360 (1462), 1959–1967.
    https://doi.org/10.1098/rstb.2005.1727

    Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Haseman, J.D. (1911) Some new species of fishes from the Rio Iguassú. Annals of the Carnegie Museum, 7 (3–4), 374–387.

    Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B Biological Sciences, 270 (1512), 313–334.
    https://doi.org/10.1098/rspb.2002.2218

    Jolicouer, P. (1963) 193. Note: The multivariate generalizations of the allometry equation. Biometrics, 19 (3), 497–499.
    https://doi.org/10.2307/2527939

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111–120.
    https://doi.org/10.1007/BF01731581

    Li, W.L.S. & Drummond, A.J. (2012) Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. Molecular Biology and Evolution, 29, 751–761.
    https://doi.org/10.1093/molbev/msr232

    Lima, S.M.Q., Lazzarotto, H. & Costa, W.J.E.M. (2008) A new species of Trichomycterus (Siluriformes: Trichomycteridae) from lagoa Feia drainage, southeastern Brazil. Neotropical Ichthyology, 6 (3), 315–322.
    https://doi.org/10.1590/s1679-62252008000300004

    Lucena, C.A.S., Calegari, B.B., Pereira, E.H.L. & Dallegrave, E. (2013) O uso de óleo de cravo na eutanásia de peixes. Boletim Sociedade Brasileira de Ictiologia, 105, 20–24.

    Lütken, C.F. (1874) Siluridae novae Brasiliae centralis a clarissimo J. Reinhardt in provincia Minas-geraës circa oppidulum Lagoa Santa, praecipue in flumine Rio das Velhas et affluentibus collectae, secundum characteres essentiales breviter descriptae. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider (Kjøbenhavn), 1874 (1), 29–36.

    Nanni, A.S., Descovi Filho, L., Virtuoso, M.A., Montenegro, D., Willrich, G., Machado, P.H., Sperb, R., Dantas, G.S. & Calazans, Y. (2013) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. Available from: http://qgis.osgeo.org (accessed 1 March 2016)

    Nylander, J.A.A. (2004) MrModeltest—Evolutionary Biology Centre, Uppsala University.

    Nogueira, C., Buckup, P.A., Menezes, N.A., Oyakawa, O.T., Kasecker, T.P., Ramos Neto, M.B. & Silva, J.M.C. (2010) Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS ONE, 5 (6), 1–10.
    https://doi.org/10.1371/journal.pone.0011390

    Ornelas-García, C.P., Domínguez-Domínguez, O. & Doadrio, I. (2008) Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evolutionary Biology, 8, 340–357.
    https://doi.org/10.1186/1471-2148-8-340

    QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Foundation. Available from: http://qgis.osgeo.org (accessed 28 Mar 2016).

    Pereira, L.H.G., Hanner, R., Foresti, F. & Oliveira, C. (2013) Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics, 14 (1), 1–14.
    https://doi.org/10.1186/1471-2156-14-20

    Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v.1.6|BEAST. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 12 June 2017)

    Reeves, R.G.U.Y. & Bermingham, E. (2006) Colonization, population expansion, and lineage turnover: phylogeography of Mesoamerican characiform fish. Biological Journal of the Linnean Society, 88, 235–255.
    https://doi.org/10.1111/j.1095-8312.2006.00619.x

    Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1626 pp.

    Shibatta, O.A., Bennemann, S.T., Mori, H. & Silva, D.F. (2008) Riqueza biológica e ecológica dos peixes do Ribeirão Varanal. In: Bennemann, S.T., Shibatta, O.A. & Viera, A.O.S., (Eds.), A Flora e Fauna do Ribeirão Varanal: um estudo da biodiversidade do Paraná. EDUEL, Londrina, pp. 77–97.

    Silva, C.C.F., Matta, L.S.F., Hilsdorf, A.W.S., Langeani, F. & Marceniuk, A.P. (2010) Color pattern variation in Trichomycterus iheringi (Eigenmann, 1917) (Siluriformes: Tricomycteridae) from Rio Itatinga and Rio Claro, São Paulo, Brasil. Neotropical Ichthyology, 8 (1), 49–56.
    https://doi.org/10.1590/S1679-62252010000100007

    Strauss, R.E. & Fuiman, L.A. (1985) Quantitative comparisons of body form and allometry in larval and adult Pacific sculpins (Teleostei: Cottidae). Canadian Journal of Zoology, 63 (7), 1582–1589.
    https://doi.org/10.1139/z85-234

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28 (10), 2731–2739.
    https://doi.org/10.1093/molbev/msr121

    Togawa, R.C. & Brigido, M.M. (2003) PHPH: Web based tool for simple electropherogram quality analysis. 1st International Conference on Bioinformatics and Computational BiologyIcoBiCoBi. Ribeirão Preto.

    Valenciennes, A. (1832) Nouvelles observations sur le capitan de Bogota, Eremophilus mutisii. In: Voyage de Humboldt et Bonpland, Deuxième partie: Observations de Zoologie et d'Anatomie compare. Chez F. Schoell, Paris, pp. 341–348.

    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 360 (1462), 1847–1857.

    Ward, R.D., Hanner, R. & Hebert, P.D. (2009) The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74 (2), 329–356.
    https://doi.org/10.1111/j.1095-8649.2008.02080.x

    Wosiacki, W.B. (2004) New species of the catfish genus Trichomycterus (Siluriformes: Trichomycteridae) from the headwaters of the rio São Francisco basin, Brazil. Zootaxa, 592 (1), 1–12.
    https://doi.org/10.11646/zootaxa.592.1.1

    Wosiacki, W.B. (2005) A new species of Trichomycterus (Siluriformes: Trichomycteridae) from the south Brazil and redescription of T. iheringi (Eigenmann). Zootaxa, 1040, 49–64.

    Wosiacki, W.B. & de Pinna, M.C.C. (2008) Trichomycterus igobi, a new catfish species from the rio Iguaçu drainage: the largest head in Trichomycteridae (Siluriformes: Trichomycteridae). Neotropical Ichthyology, 6 (1), 17–23.
    https://doi.org/10.1590/s1679-62252008000100003

    Wosiacki, W.B. & Garavello, J.C. (2004) Five new species of Trichomycterus from the rio Iguaçu (Paraná basin), southern Brazil (Siluriformes: Trichomycteridae). Ichthyological Exploration of Freshwaters, 15 (1), 1–16.