Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-11-28
Page range: 161–177
Abstract views: 1747
PDF downloaded: 1616

Pseudoliparis swirei sp. nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench

Dept. Of Oceanography, University of Hawaiʻi at Mānoa, HI 96822.
School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle Upon Tyne, UK. NE1 7RU.
School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle Upon Tyne, UK. NE1 7RU.
Dept. Of Oceanography, University of Hawaiʻi at Mānoa, HI 96822.
Dept. Of Oceanography, University of Hawaiʻi at Mānoa, HI 96822.
Pisces snailfish Notoliparis description taxonomy phylogenetics

Abstract

Pseudoliparis swirei sp. nov. is described from 37 individuals collected in the Mariana Trench at depths 6898–7966 m. The collection of this new species is the deepest benthic capture of a vertebrate with corroborated depth data. Here, we describe P. swirei sp. nov. and discuss aspects of its morphology, biology, distribution, and phylogenetic relationships to other hadal liparids based on analysis of three mitochondrial genes. Pseudoliparis swirei sp. nov. is almost certainly endemic to the Mariana Trench, as other hadal liparids appear isolated to a single trench/ trench system in the Kermadec, Macquarie, South Sandwich, South Orkney, Peru-Chile, Kurile-Kamchatka and Japan trenches. The discovery of another hadal liparid species, apparently abundant at depths where other fish species are few and only found in low numbers, provides further evidence for the dominance of this family among the hadal fish fauna.

 

References

  1. Andriashev, A. (1978) On the third species of the ultra-abyssal genus Notoliparis Andr. (Pisces. Liparidae), from the deepwaters of the Macquarie Trench, with some notes on zoogeographic and evolutionary significance of this discovery. Trudy Instituta Okeanologii Akad. Nauk. SSSR, 112, 152–161.

    Andriashev, A. (2003) Snailfishes (Liparidae, Scorpaeniformes) from the Southern Ocean and adjacent waters. In: Issledovaniya fauny morei (Study of Marine Fauna) St. Petersburg: Zool. Inst., Ross. Akad. Nauk.

    Andriashev, A.P. & Pitruk, D.L. (1993) A review of the ultra-abyssal (hadal) genus Pseudoliparis (Scorpaeniformes, Liparidae) with a description of a new species from the Japan Trench. Voprosy ikhtiologii, 33, 325–330.

    Chernova, N., Stein, D. & Andriashev, A. (2004) Family Liparidae Scopoli 1777. California Academy of Sciences Annotated Checklists of Fishes 31.

    Corfield, R. (2003) The Silent Landscape the Scientific Voyage of HMS Challenger. Washington, D.C.: Joseph Henry Press, Washington, D.C., 285 pp.

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics, and parallel computing. Nature Methods, 9 (8), 772.
    https://doi.org/10.1038/nmeth.2109

    Eastman, J., Hikida, R. & Devries, A. (1994) Buoyancy studies and microscopy of skin and subdermal extracellular matrix of the antarctic snailfish, Paraliparis devriesi. Journal of Morphology, 220, 85–101.
    https://doi.org/10.1002/jmor.1052200108

    Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.
    https://doi.org/10.1093/nar/gkh340

    Fujii, T., Jamieson, A., Solan, M., Bagley, P. & Priede, I. (2010) A large aggregation of liparids at 7703 meters and a reappraisal of the abundance and diversity of hadal fish. BioScience, 60, 506–515.
    https://doi.org/10.1525/bio.2010.60.7.6

    Gerringer, M.E., Popp, B.N., Linley, T.D., Jamieson, A.J. & Drazen, J.C. (2017a) Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis. Deep-Sea Research Part I: Oceanographic Research Papers 121, 110–120.
    https://doi.org/10.1016/j.dsr.2017.01.003

    Gerringer, M.E., Drazen, J.C. & Yancey, P.H. (2017b) Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes. Deep-Sea Research Part I: Oceanographic Research Papers, 125, 135–146.
    https://doi.org/10.1016/j.dsr.2017.05.010

    Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
    https://doi.org/10.1080/10635150390235520

    Hay, D.E. (1982) Fixation shrinkage of herring larvae: Effects of salinity, formalin concentration, and other factors. Canadian Journal of Fisheries and Aquatic Sciences 39, 1138–1143.
    https://doi.org/10.1139/f82-151

    Jamieson, A.J., Fujii, T., Solan, M., Matsumoto, A.K., Bagley, P.M. & Priede, I.G. (2009) Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proceedings of the Royal Society B: Biological Sciences, 276 (1659), 1037–1045.
    https://doi.org/10.1098/rspb.2008.1670

    Jamieson, A.J., Kilgallen, N., Rowden, A., Fujii, T., Horton, T., Lörz, A.-N., Kitazawa, K. & Priede, I. (2011) Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean: Evidence for an ecotone across the abyssal–hadal transition zone. Deep Sea Research Part I: Oceanographic Research Papers 58, 49–62.
    https://doi.org/10.1016/j.dsr.2010.11.003

    Kai, Y., Orr, J.W., Sakai, K. & Nakabo, T. (2011) Genetic and morphological evidence for cryptic diversity in the Careproctus rastrinus species complex (Liparidae) of the North Pacific. Ichthyological Research, 58, 143–154.
    https://doi.org/10.1007/s10228-010-0202-2

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649.
    https://doi.org/10.1093/bioinformatics/bts199

    Kristoffersen, J.B. & Salvanes, A.G.V. (1998) Effects of formaldehyde and ethanol preservation on body and otoliths of Maurolicus muelleri and Benthosema glaciale. Sarsia, 83, 95–102.
    https://doi.org/10.1080/00364827.1998.10413675

    Letunic, I. & Bork, P. (2007) Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–8.
    https://doi.org/10.1093/bioinformatics/btl529

    Linley, T.D., Gerringer, M.E., Yancey, P.H., Drazen, J.C., Weinstock, C.L. & Jamieson, A.J. (2016) Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Research Part I: Oceanographic Research Papers, 114, 99–110.
    https://doi.org/10.1016/j.dsr.2016.05.003

    Linley, T.D., Stewart, A.L., McMillan, P.J., Clark, M.R., Gerringer, M.E., Drazen, J.C., Fujii, T. & Jamieson, A.J. (2017) Bait attending fishes of the abyssal zone and hadal boundary: community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches. Deep Sea Research Part I: Oceanographic Research Papers, 121, 38–53.
    https://doi.org/10.1016/j.dsr.2016.12.009

    Matallanas, J., Rucabado, J., Lloris, D. & Olivar, M.P. (1990) Early stages of development and reproductive biology of the South-American eelpout Austrolycus depressiceps Regan, 1913 (Teleostei: Zoarcidae). Scientia Marina, 54 (3), 257–261.

    McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P. & Lopez, R. (2013) Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, 41, 597–600.
    https://doi.org/10.1093/nar/gkt376

    Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M. & Nishida, M. (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 26 (1), 121–138.
    https://doi.org/10.1016/S1055-7903(02)00332-9

    Pérês, J. (1965) Aperçu sur les résultats de deux plongées effectuées dans le ravin de Puerto-Rico par le bathyscaphe Archimède. Deep-Sea Research and Oceanographic Abstracts, 12, 883–891.
    https://doi.org/10.1016/0011-7471(65)90811-9

    R Core Development Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Au.

    Sabaj Perez, M. (2014) Standard Symbolic Codes for Institutional Resource Collections in Herpetology and Ichthyology Citation. Version 5.

    Saruwatari, T., López, J.A., Pietsch, T.T.W., Lopez, J. & Pietsch, T.T.W. (1997) Cyanine blue: A versatile and harmless stain for specimen observation. Copeia, 1997, 840–841.
    https://doi.org/10.2307/1447302

    Stamatakis, A. (2014) Stamatakis - 2014 - RAxML version 8 a tool for phylogenetic analysis and post-analysis of large phylogenies. 2010–2011.

    Stein, D.L. (2012) Snailfishes (Family Liparidae) of the Ross Sea, Antarctica, and closely adjacent waters. Zootaxa 3285, 1–120.

    Stein, D.L. (2016) Description of a new hadal Notoliparis from the Kermadec Trench, New Zealand, and redescription of Notoliparis kermadecensis (Nielsen) (Liparidae, Scorpaeniformes). Copeia, 104 (4), 907–920.
    https://doi.org/10.1643/CI-16-451

    Stein, D.L., Chernova, N. & Andriashev, A.P. (2001) Snailfishes (Pisces: Liparidae) of Australia, including descriptions of thirty new species. Records of the Australian Museum 53, 341–406.
    https://doi.org/10.3853/j.0067-1975.53.2001.1351

    Steinke, D., Zemlak, T.S., Gavin, H. & Hebert, P.D.N. (2009) DNA barcoding fishes of the Canadian Pacific. Marine Biology, 156 (12), 2641–2647.
    https://doi.org/10.1007/s00227-009-1284-0

    Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
    https://doi.org/10.1093/molbev/mst197

    Taylor, W.R. (1967a) An enzyme method of clearing and staining small vertebrates. Smithsonian Press, Washington, D.C.

    Taylor, W.R. (1967b) Outline of a method of clearing and staining tissues with pancreatic enzymes and staining bones of small vertebrates. Turtox News 45.

    Tyler, C.R. & Sumpter, J.P. (1996) Oocyte growth and development in teleosts. Reviews in Fish Biology and Fisheries, 6 (3), 287–318.
    https://doi.org/10.1007/BF00122584

    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B, 360, 1847–1857.
    https://doi.org/10.1098/rstb.2005.1716

    Wickam, H. (2009) ggplot2: elegant graphics for data analysis.

    Yancey, P., Gerringer, M., Drazen, J., Rowden, A. & Jamieson, A. (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proceedings of the National Academy of Sciences of the United States of America, 111, 4461–5.
    https://doi.org/10.1073/pnas.1322003111

    Zhang, J.-B. & Hanner, R. (2011) DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics and Ecology, 39 (1), 31–42.
    https://doi.org/10.1016/j.bse.2010.12.017