Abstract
The taxonomy of the genus Cricetulus has been controversial. The phylogenetic relationships both within the genus and among Cricetulus lineages and other genera were examined using a set of five nuclear and two mitochondrial genes. The results demonstrate that Cricetulus in its current treatment is a polyphyletic assemblage because the subgenus Urocricetus is phylogenetically unrelated to all other Cricetulus and is a distant sister group to Phodopus. The grey hamster (C. migratorius) proved to be closer to Cricetus and Allocricetulus than to Cricetulus proper, which includes C. barabensis C. sokolovi and C. longicaudatus. Based on these results Urocricetus is elevated to the rank of a full genus and a new genus Nothocricetulus gen.nov. is described for the grey hamster.
References
Alexeeva, N.V. & Erbajeva, M.A. (2008) Diversity of Late Neogene-Pleistocene small mammals of the Baikalian region and implications for paleoenvironment and biostratigraphy: An overview. Quaternary International, 179, 190–195.
https://doi.org/10.1016/j.quaint.2007.10.011Argyropulo, A.I. (1933) Die Gattungen und Arten der Hamster (Cricetinae Murray, 1866) der Palaearctic. Zeitschrift für Säugetierkunde, 20, 129–149.
Bell, C.J., Lundelius, E.L., Barnosky, A., Graham, R.W., Lindsay, E.H., Ruez, D.R., Semken, H.A., Webb, S.D. & Zakrzewski, R.J. (2004) The Blancan, Irvingtonian, and Rancholabrean mammal ages. In: Woodburne, M.O. (Ed.), Late Cretaceous and Cenozoic mammals of North America: Biostratigraphy and Geochronology. Columbia University Press, New York, pp. 232–314.
https://doi.org/10.7312/wood13040-009Bescós, G.C. (2003) Análisis filogenético de Allocricetus del Pleistoceno (Cricetidae, Rodentia, Mammalia) Allocricetus (Cricetidae, Rodentia, Mammalia) from the Pleistocene.A phylogenetical approach. Coloquios de Paleontología, 1, 95–113.
Ding, Li, Wenjia, Li. & Lia, J. (2016) Mitochondrial genome of Cricetulus migratorius (Rodentia: Cricetidae): Insights into the characteristics of the mitochondrial genome and the phylogenetic relationships of Cricetulus species. Gene, 595, 121–129.
https://doi.org/10.1016/j.gene.2016.10.003Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
https://doi.org/10.1093/molbev/mss075Ellerman, J.R. (1941) The families and genera of living rodents. V.I. Rodents, other than Muridae. British Museum Natural History, London, 689 pp.
Farris, J.S., Källersjö, M., Kluge, A.B. & Bult, C. (1995) Testing significans of incongruence. Cladistics, 10, 315–319.
https://doi.org/10.1111/j.1096-0031.1994.tb00181.xFahlbusch, V, (1969) Pliozäne und Pleistozäne Cricetinae (Rodentia, Mammalia) aus Polen. Acta Zoologica Cracoviensia, 5, 99–138.
Freudenthal, M., Mein, P. & Suárez, E.M. (1998) Revision of Late Miocene and Pliocene Cricetinae (Rodentia, Mammalia) from Spain and France. Treballs del Museu de Geologia de Barcelona, 7, 11–93.
Heled, J. & Drummond, A.J. (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580.
https://doi.org/10.1093/molbev/msp274Jobb, G. (2008) TREEFINDER version of June 2008. Munich, Germany. Distributed by the author. Available from: http://www.treefinder.de/ (accessed 22 January 2018)
Kang, C., Yue, H., Liu, M., Huang, T., Liu, Y., Zhang, X., Yue, B., Zeng, T. & Liu, S. (2014) The complete mitochondrial genome of Cricetulus kamensis (Rodentia: Cricetidae). Mitochondrial DNA, Early Online, 1–2.
Kumar, S. & Gadagkar, S.R. (2001) Disparity Index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics, 158, 1321–1327.
Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.
https://doi.org/10.1093/molbev/mss020Larget, B.R., Kotha, S,K., Dewey, C.N. & Ané, C. (2010) BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics, 26, 2910–2911.
https://doi.org/10.1093/bioinformatics/btq539Lebedev, V.S. (2000) A morphometric study of geographic variability in grey hamsters (Cricetulus migratorius Pall.). In: Agadjianian, A.K. & Orlov, V.N. (Eds.), Systematics and phylogeny of the rodents and lagomorphs. A.N. Severtsov Institute of ecology and evolution and Paleontological Institute RAS, Moscow, pp. 82–84.
Lebedev, V.S., Ivanova, N.V., Pavlova, N.K. & Poltoraus, A.B. (2003) Molecular phylogeny of the Palearctic hamsters. In: Averianov, A. & Abramson, N. (Eds.), Systematics, phylogeny and paleontology of small mammals. Zoological Institute RAS, Saint-Petersburg, pp. 114–118.
Lebedev, V.S. & Potapova, E.G. (2008) The zygomasseteric structure in Palearctic hamsters Cricetinae (Rodentia) and the taxonomic status of Cricetulus Kozlovi Satunin 1902. Zoologicheskii Zhurnal, 87, 90–103.
Liu, L., Yu, L., Kubatko, Pearl, D.K. & Edwards, S.V. (2009) Coalescent methods for estimating phylogenetic trees. Molecular Phylogenetics and Evolution, 53, 320–328.
https://doi.org/10.1016/j.ympev.2009.05.033Liu, L. & Yu, L. (2010) Phybase: an R package for species tree analysis. Bioinformatics, 26, 962–963.
https://doi.org/10.1093/bioinformatics/btq062Meiklejohn, K.A., Danielson, M.J., Faircloth, B.C., Glenn, T.C., Braun, E.L., Kimball, R.T. (2014) Incongruence among different mitochondrial regions: a case study using complete mitogenomes. Molecular Phylogenetics & Evolution, 78, 314–323.
https://doi.org/10.1016/j.ympev.2014.06.003Musser, G.G. & Carleton, M.D. (2005) Superfamily Muroidea. In: Wilson, D.E. & Reeder, D.M. (Eds.), Mammals Species of the World. A Taxonomic and Geographic Reference. 3rd Edition. The Johns Hopkins University Press, Baltimore, pp. 2142.
Neumann, K., Neumann, S., Gattermann, R., Michaux, J., Lebedev, V., Yigit, N., Colak, E., Ivanova, N., Poltoraus, A, Surov, A., Markov, G. & Maak, S. (2006) Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA. Molecular Phylogenetics and Evolution, 39, 135–148.
https://doi.org/10.1016/j.ympev.2006.01.010Pavlinov, I.Y. (2003) Taxonomy of Recent mammals. Archives of Zoological Museum of Moscow State University, 46, 3–297 [in Russian]
Pradel, A. (1981) Biometrical remarks on the hamster Cricetulus migratorius (Pallas 1773) (Rodentia, Mammalia) from Krak de Chevaliers (Syria). Acta Zoologica Cracoviensia, 25, 271–292.
Romanenko, S.A., Volobouev, V.T., Perelman, P.L., Lebedev, V.S., Serdukova, N.A., Trifonov, V.A., Biltueva, L.S., Nie, W., O`Brien, P.C.M., Bulatova, N. Sh., Ferguson-Smith, M.A., Yang F. & Graphodatsky, A.S. (2007) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Research, 15, 283–297.
https://doi.org/10.1007/s10577-007-1124-3Rambaut, A. & Drummond, A. (2005) Tracer. Version 1.5. Computer program distributed by the authors. Department of Zoology, University of Oxford, UK. Available from: http://evolve.zoo.ox.ac.uk/software.html (accessed 17 January 2017)
Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180Sambrook, J., Green, M.R. & Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Lab. Press, New York, 398 pp.
Satunin, K.A. (1902) Neue Nagetiere aus den Materialien der grossen russischen Expeditionen nach Centralasien. Annuaire du Musee Zoologique St. Petersb, 7, 549–587.
Schenk, J.J., Rowe, K.C. & Steppan, S.J. (2013) Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Systematic Biology, 62, 837–864.
https://doi.org/10.1093/sysbio/syt050
Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51, 492–508.
https://doi.org/10.1080/10635150290069913Smith, A.T. & Xie, Y. (2009) (Eds.) A guide to the mammals of China. Princeton University Press, Princeton, 544 рp.
Steppan, S.J., Storz, B.L. & Hoffmann, R.S. (2004) Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG. Molecular Phylogenetics and Evolution, 30, 703–719.
https://doi.org/10.1016/S1055-7903(03)00204-5Swofford, D.L. (2003) PAUP*—Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Sinauer Associates, Massachusetts. [software]
Tamura, K. Dudley, J. Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.
https://doi.org/10.1093/molbev/msm092Tesakov, A. (2004) Biostratigraphy of Middle Pliocene—Eopleistocene of Eastern Europe (based on small mammals). Nauka, Moscow, 247 pp.
Tjutkova, L.A. & Kaipova, G.O. (1996) Late Pliocene and Eopleistocene micromammal faunas of south-eastern Kazakhstan. Acta Zoologica Cracoviensia, 39, 546–557.
Topachevskiy, V.A. & Skorik, A.F. (1992) Neogene and Pleistocene primitive Cricetidae of the south of eastern Europe. Naukova dumka, Kiev, pp. 242 [in Russian]
Vasileiadou, K.V., Koufos, G.D. & Syrides, G.E. (2003) Silata, a new locality with micromammals from the Miocene/Pliocene boundary of the Chalkidiki peninsula, Macedonia, Greece. Deinsea, 10, 549–562.
Vorontsov, N.N. (1982) [The hamsters (Cricetidae) of the world fauna. Part I. Morphology and ecology]. Fauna of the USSR, Series Nov., No. 125, Mammals, 3 (6), 1–451. [in Russian]
Wang, S. & Zheng, C. (1973) Notes on Chinese hamsters (Cricetinae). Acta Zoologica Sinica, 19, 61–68.
Willerslev, E., Gilbert, M.T., Binladen, J., Ho, S.Y., Campos, P.F., Ratan, A., Tomsho, L.P., da Fonseca, R.R., Sher, A., Kuznetsova, T.V., Nowak-Kemp, M., Roth, T.L., Miller, W. & Schuster, S.C. (2009) Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evolutionary Biology, 9, 95.
https://doi.org/10.1186/1471-2148-9-95Xie, W., Lewis, P.O., Fan, Y., Kuo, L. & Chen, M.H. (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150–160.
https://doi.org/10.1093/sysbio/syq085Yang, Z. (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586–1591.
https://doi.org/10.1093/molbev/msm088Zhang, Y., Jin, S., Quan, G., Li, S.,Ye, Z., Wang, F. & Zhang, M. (1997) Distribution of mammalian species in China. China Forestry Publishing House, Beijing, 280 pp.