Abstract
Mastigias, the ‘golden’ or ‘spotted’ jellyfish, is distributed throughout the Indo-Pacific. Specimens are identified routinely as Mastigias papua, although eight species were described historically, and molecular analyses evince at least three phylogenetic species. Understanding species diversity in Mastigias has become a priority because of its growing relevance in studies of boom-bust dynamics related to environmental change, cryptic species, local adaptation, parallel evolution, and peripatric speciation. However, species delimitation and identification are inhibited by a dearth of type specimens for most species, including M. papua. We address these issues by resampling Mastigias from the type locality in Waigeo, West Papua, as well as in the Philippines, and by comparing cytochrome c oxidase subunit I and up to 34 morphological characters of 268 Mastigias specimens from surrounding regions in the Indo-Pacific. We also gathered data from the historical descriptions of the eight species of Mastigias to estimate the identity of the two other currently revealed clades. Using this integrative taxonomic approach, we re-describe Mastigias papua as endemic to the tropical western Pacific islands (including Papua, Palau, Enewetak) and designate a neotype for the species. Additionally, based on morphological similarity and geographic overlap, we identified a second clade most probably as M. albipunctatus (from Japan, Komodo, Berau and Philippines) and a third clade tentatively as either M. andersoni or M. ocellatus. This study highlights the benefits of combining molecular analyses, samples from type locations, traditional descriptions and statistical analyses of morphological variation in systematic studies, and the concomitant potential of such studies to increase understanding of evolutionary patterns and processes in Scyphozoa.
References
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
https://doi.org/10.1093/nar/25.17.3389Appeltans, W., Ahyong, S.T., Anderson, G., Angel, M.V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Paszkowycz, M.B., Bock, P., Boxshall G., Boyko,C.B., Brandão,S.N., Bray, R.A., Bruce, N.L., Cairns,S.D., Chan,T.Y., Cheng,L., Collins,A.G., Cribb, T., Galletti, M.C., Guebas, F.D., Davie, P.J.F., Dawson, M.N., Clerck, Wim Decock, O.D., Grave, S.D., Voogd, N.J., Domning, D.P., Emig, C.C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D.G., Feist, S.W., Fransen, C.H.J.M. Furuya, H., Alvarez, O.G., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Daglio, L.G., Gordon, D.P., Guiry, M.D., Hernandez, F., Hoeksema, B.W. & Hopcroft, R.R. (2012) The magnitude of global marine species. Current Biology, 23, 2189–2202.
https://doi.org/10.1016/j.cub.2012.09.036Bayha, K.M. & Graham, W.M. (2011) First confirmed reports of the rhizostome jellyfish Mastigias (Cnidaria: Rhizostomeae) in the Atlantic basin. Aquatic Invasions, 6, 361–366.
https://doi.org/10.3391/ai.2011.6.3.13Bayha, K.M. & Graham, W.M. (2014) Nonindigenous marine jellyfish: invasiveness, invisibility and impacts. In: Pitt, K.A. & Lucas, C.H. (Eds.), Jellyfish blooms. Springer, Berlin, pp. 45–77.
https://doi.org/10.1007/978-94-007-7015-7_3
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.
https://doi.org/10.1016/j.tree.2006.11.004Chun, C. (1896) Beiträge zur Kenntniss Ostafrikanischer Medusen und Siphonophoren nach den Sammlungen Dr. Stuhlmann’s. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, 13, 13–3.
Cuvier, G. (1800) Mémoire sur l'organisation de quelques méduses. Bulletin des Sciences, Société Philomathique, Paris, Series I, Tome 2, 69.
Darriba, D., Taboada, G.L., Doallo, R. & Darriba, D.P. (2012) jModelTest 2.1.7: more models, new heuristics and parallel computing. Nature Methods, 9, 772.
https://doi.org/10.1038/nmeth.2109Dawson, M.N. (2003) Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology, 143, 369–379.
https://doi.org/10.1007/s00227-003-1070-3Dawson, M.N. (2005a) Five new subspecies of Mastigias (Scyphozoa, Rhizostomeae, Mastigiidae) from marine lakes, Palau, Micronesia. Journal of Marine Biology Association of United Kingdom, 85, 679–694.
https://doi.org/10.1017/s0025315405011604Dawson, M.N. (2005b) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa : Semaeostomeae : Cyaneidae) in south-eastern Australia. Invertebrate Systematics, 19, 361–370.
https://doi.org/10.1071/is03035Dawson, M.N. (2005c) Morphological variation and taxonomy in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) - a golden unstandard? Hydrobiologia, 537, 185–206.
https://doi.org/10.1007/s10750-004-2840-8Dawson, M.N. (2005d) Renaissance taxonomy: integrative evolutionary analyses in the classification of Scyphozoa. Journal of the Marine Biological Association of the UK, 85, 733–739.
https://doi.org/10.1017/s0025315405011641Dawson, M.N. & Jacobs, D.K. (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin, 200, 92–96.
https://doi.org/10.2307/1543089Dawson, M.N., Martin, L.E. & Penland, L.K. (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia, 451, 131–144.
https://doi.org/10.1007/978-94-010-0722-1_12Dawson, M.N., Cieciel, K., Decker, M.B., Hays, G.C., Lucas, C.H. & Pitt, K.A. (2015) Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biological Invasions, 17, 851–867.
https://doi.org/10.1007/s10530-014-0732-zDawson, M.N. & Hamner, W.M. (2003) Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa: Rhizostomeae). Marine Biology, 143, 1161–1174.
https://doi.org/10.1007/s00227-003-1155-zDawson, M.N. & Hamner, W.M. (2005) Rapid evolutionary radiation of marine zooplankton in peripatry. Proceedings of the National Academy of Sciences of the United States of America, 102, 9235–9240.
https://doi.org/10.1073/pnas.0503635102Dawson, M.N. & Hamner, W.M. (2009) A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia, 616, 193–215.
https://doi.org/10.1007/s10750-008-9591-xDayrat, B. (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.
https://doi.org/10.1111/j.1095-8312.2005.00503.xDrummond, A.J. & Rambaut, A. (2012) BEAST: Bayesian evolutionary analysis by sampling trees. Bio Med Central Evolutionary Biology, 7, 214–222.
https://doi.org/10.1186/1471-2148-7-214Eldredge, L.G. & Smith, C. (2001) Guidebook to the introduced marine species in Hawaiian waters. Bishop Museum Technical Report 21. Bishop Museum, Honolulu. Available from: http://www2.bishopmuseum.org/HBS/invertguide/ (accessed 7 October 2016)
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
https://doi.org/10.1590/2358-2936e2016030Glenner, H., Hansen, A.J., Sørensen, M.V., Ronquist, F., Huelsenbeck, J.P. & Willerslev, E. (2004) Bayesian inference of the metazoan phylogeny. Current Biology, 14, 1644–1649.
https://doi.org/10.1016/j.cub.2004.09.027Gómez Daglio, L. & Dawson, M.N (2018) Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. Invertebrate Systematics. [in press]
Graham, W. & Bayha, K. (2007) Biological Invasions by marine jellyfish. In: Nentwig W. (Ed.) Ecological Studies. Biological Invasions. Vol. 193. Springer, Berlin Heidelberg, 193, pp 239–255.
https://doi.org/10.1007/978-3-540-36920-2_14Haeckel, E. (1880) Monographie der Medusen. In: Denkschriften der Medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena.Verlag von Gustav Fischer, Jena, pp. 361–672.
Hamner, W.M. (1982) Strange world of Palau’s salt lakes. National Geographic, 161, 264–282.
Hamner, W.H. & Hauri, I. (1981) Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnology and Oceanography, 26, 414–423.
https://doi.org/10.4319/lo.1981.26.3.0414Holland, B.S., Dawson, M.N, Crow, G.L. & Hofmann, D.K. (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology, 145, 1119–1128.
https://doi.org/10.1007/s00227-004-1409-4Knowlton, N. (1993) Sibling species in the sea. Annual Review of Ecology and Systematics, 24, 189–216.
https://doi.org/10.1146/annurev.ecolsys.24.1.189Kramp, P.L. (1961) Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom, 40, 1–469.
https://doi.org/10.1017/s0025315400007347Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Version 7.0 for bigger datasets (submitted). Molecular Biology and Evolution, 33, 1870–1874.
https://doi.org/10.1093/molbev/msw054Lesson, R.P. (1830) Voyage autour du monde, exécut par ordre du Roi, sur la corvette de Sa Magest La Coquille, pendant les années 1822–25. Vol. 2. Arthus Bertrand, Paris, 1828 pp.
Maas Maas, O. (1903) Die Scyphomedusen der Siboga-Expedition. Siboga-Expeditie, 11, 1–91.
Maddison, W.P. & Maddison, D.R. (2016) Mesquite: a modular system for evolutionary analysis. Version 3.10 Available from http://mesquiteproject.org (accessed 5 February 2016)
Martin, L.E., Dawson, M.N., Bell, L.J. & Colin, P.L. (2006) Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biological Letters, 2, 144–147.
https://doi.org/10.1098/rsbl.2005.0382Mayer, A.G. (1910) The medusae of the world III. The Scyphomedusae. Carnegie Institution, Washington D.C., 237 pp. [pp. 499–735]
Modeer, A. (1791) Tentamen Systematis Medusarum Stabiliendi. Nova Acta Physico-Medica Academiae Caesarea Leopoldino-Carolinae Naturae Curiosorum, Tommus VIII, 27.
Muscatine, L. & Marian, R.E. (1982) Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography, 27, 910–917.
https://doi.org/10.4319/lo.1982.27.5.0910Muscatine, L. Wilkerson, F.P. & McCloskey, L.R. (1986) Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Marine Ecology Progress Series, 32, 279–290.
https://doi.org/10.3354/meps032279Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Wagner, H. (2016) vegan: Community Ecology Package. R package. Version 2.4-0. Available from: https://cran.r-project.org/web/packages/vegan/index.html (accesed 27 July 2018)
Purcell, J.E. (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series, 348, 183–196.
https://doi.org/10.3354/meps07056Rambaut, A. (2012) Figtree. Version 1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 8 March 2016)
Rambaut, A. & Drummond, A.J. (2007) Tracer. Version 1.4.6 Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 10 April 2016)
Reynaud, A.A.M. (1830) La Rhizostome (meduse) Rose. In: Lesson, R.P, Centurie zoologique, ou, Choix d'animaux rares, nouveaux ou imparfaitement connus: enrichi de planches inédites, dessinées d'après nature par M. Prêtre, gravées et coloriées avec le plus grand soin par R.P. Lesson. Chez F.G. Levrault, Bruxelles, 97 pp.
RStudio Team (2015) RStudio: Integrated development for R. RStudio, Inc., Boston, MA. Avaliable from:
http://www.rstudio.com/ (accessed 15 August 2015)
Roduit, N. (2008) JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definitions images. Version 1.2.7. On-line. Available from: http://www.jmicrovision.com/oldRelease.html (accessed 6 February 2013)
Gene Codes Corporation (2017) Sequencher version 5.4.5 sequence analysis software, Gene Codes Corporation, Ann Arbor, MI. [software]
Sievers, F., Wilm, A., Dineen, D., Gibson T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D. & Higgins, D.G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega 1.2.4. Molecular Systems Biology, 7, 539.
https://doi.org/10.1038/msb.2011.75Stiasny, G. (1920) Die Scyphomedusen-Sammlung des Naturhistorischen Reichsmuseums in Leiden. III. Rhizostomeae. Zoologische Mededeelingen, 5, 213–230.
Stiasny, G. (1921) Studien über Rhizostomeen mit besonderer berücksichtigung der Fauna des Malaiischen Archipels nebsteiner revision des Systems. Capita Zoologica, 1, 1–179.
Stiasny, G. (1926) Alte und neue Scyphomedusen von Australien. Zoologische Mededeelingen, Leiden, 9, 249–257.
Swift, H.F., Gómez Daglio, L. & Dawson, M.N. (2016) Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Molecular Phylogenetics and Evolution, 99, 103–115.
https://doi.org/10.1016/j.ympev.2016.02.013
Tamura, K., Nei, M. & Kumar, S. (2004) Prospects for inferrig very large phylogenis by using the neighbor-joining method. Proceedings of the National Academy of Sciences, USA, 101, 11030–11035.
https://doi.org/10.1073/pnas.0404206101Uchida, T. (1926) The anatomy and development of a rhizostome medusa Mastigias papua L. Agassiz, with observations on the phylogeny of Rhizostomae. Journal of the Faculty of Science, Tokyo, Sct. IV, Zoology, 1, 45–95.
Uchida, T. (1947) Some medusae from the central Pacific. Journal of the Faculty of Science, Hokkaido University, 9, 297–319.
Vanhöffen, E. (1888) Untersuchungen über Semaeostome und Rhizostome Medusen. Biblioteca Zoologica, 1, 5–52.