Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-10-29
Page range: 101–114
Abstract views: 113
PDF downloaded: 84

A newly recognised species of Cryptes Maskell 1892 (Hemiptera: Coccidae) from Western Australia

Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, 60004, Taiwan. Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia. The University of Queensland, School of Biological Sciences, Brisbane, QLD 4072, Australia.
Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación Palmira, Calle 23, Carrera 37, Continuo al Penal, Palmira, Valle, Colombia.
Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación Palmira, Calle 23, Carrera 37, Continuo al Penal, Palmira, Valle, Colombia.
Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
The University of Queensland, School of Biological Sciences, Brisbane, QLD 4072, Australia.
Hemiptera Coccomorpha Coccoidea wattle tick scale Eulecaniinae Filippiinae Acacia COI DNA barcode taxonomy

Abstract

Cryptes utzoni Lin, Kondo & Cook sp. n. (Hemiptera: Coccidae) is described based on adult female morphology and DNA sequences from mitochondrial and nuclear loci. This Australian endemic species was found on the stem of Acacia aneura (Fabaceae) in Western Australia. All phylogenetic analyses of three independent DNA loci show that C. utzoni is closely related to C. baccatus (Maskell), the type and only species of Cryptes Maskell, 1892. The adult female of C. utzoni is described and illustrated and a table is provided of the characters that differ among adult females of the two species of Cryptes now recognised (C. baccatus and C. utzoni) and a morphologically similar Western Australian species, Austrolichtensia hakearum (Fuller). There is deep genetic divergence in COI among samples of C. baccatus, suggesting the possibility of a species complex in this taxon.

 

References

  1. Ben-Dov, Y. & Hodgson, C.J. (1997) 1.4 Techniques. In: Ben-Dov, Y. & Hodgson, C.J. (Eds.), Soft Scale Insects: Their Biology, Natural Enemies and Control. Vol. 7A. World Crop Pests. Elsevier Science B.V., Amsterdam, pp. 389–395.

    Brady, S.G., Gadau, J. & Ward, P.S. (2000) Systematics of the ant genus Camponotus (Hymenoptera: Formicidae): A preliminary analysis using data from the mitochondrial gene cytochrome oxidase I. In: Austin, A.D. & Dowton, M. (Eds.), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing, Melbourne, pp. 131–139.

    Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.
    https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P. & Zhao, S. (1995) A highly conserved nuclear gene for low-level phylogenetics: Elongation Factor-1α recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution, 12, 650–656.

    Cook, L.G. (2001) Extensive chromosomal variation associated with taxon divergence and host specificity in the gall-inducing scale insect Apiomorpha munita (Schrader) (Hemiptera: Sternorrhyncha: Coccoidea: Eriococcidae). Biological Journal of the Linnean Society, 72, 265–278.
    https://doi.org/10.1111/j.1095-8312.2001.tb01316.x

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.
    https://doi.org/10.1038/nmeth.2109

    Dowton, M. & Austin, A.D. (1998) Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): Combined analysis of 16S and 28S rDNA genes and morphological data. Molecular Phylogenetics and Evolution, 10, 354–366.
    https://doi.org/10.1006/mpev.1998.0533

    Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
    https://doi.org/10.1186/1471-2148-7-214

    Farrell, G.S. (1990) Redescription of Cryptes baccatus (Maskell) (Coccoidea: Coccidae), an Australian species of soft scale. Memoirs of the Museum of Victoria, 51, 65–82.
    https://doi.org/10.24199/j.mmv.1990.51.03

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    Froggatt, W.W. (1915) A descriptive catalogue of the scale insects ("Coccidae") of Australia. Agricultural Gazette of New South Wales, 26, 411–423, 603–615, 754–764.

    Fuller, C. (1897) Some Coccidae of Western Australia. Journal of Western Australia Bureau of Agriculture, 4, 1344–1346.

    Fuller, C. (1899) XIV. Notes and descriptions of some species of Western Australian Coccidae. Transactions of the Entomological Society of London, 47, 435–473.
    https://doi.org/10.1111/j.1365-2311.1899.tb00988.x

    García Morales, M., Denno, B.D., Miller, D.R., Miller, G.L., Ben-Dov, Y. & Hardy, N.B. (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Available from: http://scalenet.info (accessed 25 July 2018)

    Hardy, N.B., Gullan, P.J., Henderson, R.C. & Cook, L.G. (2008) Relationships among felt scale insects (Hemiptera: Coccoidea: Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy. Invertebrate Systematics, 22, 365–405.
    https://doi.org/10.1071/IS07032

    Hasegawa, M., Kishino, H. & Yano, T.A. (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial-DNA. Journal of Molecular Evolution, 22, 160–174.
    https://doi.org/10.1007/BF02101694

    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.
    https://doi.org/10.1073/pnas.0406166101

    Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.
    https://doi.org/10.1093/sysbio/42.2.182

    Hodgson, C.J. (1994) The Scale Insect Family Coccidae: An Identification Manual to Genera. CAB International, Wallingford, 639 pp.

    Huelsenbeck, J.P. & Rannala, B. (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904–913.
    https://doi.org/10.1080/10635150490522629

    Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
    https://doi.org/10.1093/nar/gkf436

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.
    https://doi.org/10.1093/bioinformatics/bts199

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
    https://doi.org/10.1007/BF01731581

    Lin, Y.-P., Kondo, T., Gullan, P.J. & Cook, L.G. (2013) Delimiting genera of scale insects: molecular and morphological evidence for synonymising Taiwansaissetia Tao, Wong and Chang with Coccus Linnaeus (Hemiptera: Coccoidea: Coccidae). Systematic Entomology, 38, 249–264.
    https://doi.org/10.1111/j.1365-3113.2012.00664.x

    Lin, Y.-P., Edwards, R.D., Kondo, T., Semple, T.L. & Cook, L.G. (2017a) Species delimitation in asexual insects of economic importance: The case of black scale (Parasaissetia nigra), a cosmopolitan parthenogenetic pest scale insect. PLoS ONE, 12, e0175889.
    https://doi.org/10.1371/journal.pone.0175889

    Lin, Y.-P., Ding, Z.Y., Gullan, P.J. & Cook, L.G. (2017b) A newly recognised Australian endemic species of Austrolecanium Gullan & Hodgson 1998 (Hemiptera: Coccidae) from Queensland. Zootaxa, 4272 (1), 119–130.
    https://doi.org/10.11646/zootaxa.4272.1.6

    Maskell, W.M. (1891) Further coccid notes: with descriptions of new species, and remarks on coccids from New Zealand, Australia, and elsewhere. Transactions and Proceedings of the Royal Society of New Zealand, 24, 1–64.

    Mayr, E. (1942) Systematics and the Origin of Species. Columbia University Press, New York, 334 pp.

    Miller, D.R. & Hodgson, C.J. (1997) 1.1.3.7 Phylogeny. In: Ben-Dov, Y. & Hodgson, C.J. (Eds.), Soft Scale Insects: Their Biology, Natural Enemies and Control. Vol. 7A. World Crop Pests. Elsevier Science B.V., Amsterdam, pp. 229–250.

    Park, D.S., Suh, S.J., Oh, H.W. & Hebert, P.D.N. (2010) Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genomics, 11, 423.
    https://doi.org/10.1186/1471-2164-11-423

    Raftery, A., Newton, M., Satagopan, J. & Krivitsky, P. (2007) Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M. & West, M. (Eds.), Bayesian Statistics 8. Oxford University Press, New York, pp. 371–416.

    Rogers, J. & Wall, R. (1980) A mechanism for RNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 77, 1877–1879.
    https://doi.org/10.1073/pnas.77.4.1877

    Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
    https://doi.org/10.1093/bioinformatics/btg180

    Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.
    https://doi.org/10.1093/aesa/87.6.651

    Singh, K. (2010) Australian National Botanic Gardens, Acacia aneura, Australian Government, Canberra. Available from: https://www.anbg.gov.au/gnp/interns-2010/acacia-aneura.html (accessed 13 August 2018)

    Swofford, D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
    https://doi.org/10.1093/molbev/msr121

    Tang, F.-T. (1991) The Coccidae of China. Shanxi United Universities Press, Taiyuan, Shanxi, 377 pp. [in Chinese]

    Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.

    von Dohlen, C.D. & Moran, N.A. (1995) Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution, 41, 211–223.
    https://doi.org/10.1007/BF00170675

    Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. & Wheeler, W.C. (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.
    https://doi.org/10.1093/sysbio/46.1.1

    Yeates, D.K. & Cassis, G. (2017) Australian insect biogeography: beyond faunal provinces and elements towards processes. In: Ebach, M.C. (Ed.), Handbook of Australasian Biogeography. CRC Press, Boca Raton, Florida, pp. 241–266.

    Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution, 39, 315–329.
    https://doi.org/10.1007/BF00160155