Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-12-19
Page range: 301–340
Abstract views: 135
PDF downloaded: 5

The ant genus Rhopalomastix (Hymenoptera: Formicidae: Myrmicinae) in Southeast Asia, with descriptions of four new species from Singapore based on morphology and DNA barcoding

Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377
Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Singapore 117558
Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 Thailand
Hymenoptera Crematogastrini Southeast Asia integrative taxonomy DNA barcoding

Abstract

The true diversity of the Asian ant genus Rhopalomastix Forel is poorly understood. We use an integrated approach to review the known species and subspecies of Rhopalomastix in Southeast Asia. Based on morphology and supporting DNA evidence, we recognize six species. We raise two subspecies of R. rothneyi Forel to species rank (R. johorensis Wheeler stat. n, R. javana Wheeler stat. n.), synonymize R. janeti Donisthorpe (syn. nov.) with R. johorensis, and describe four new species from Singapore: R. glabricephala sp. n., R. murphyi sp. n., R. striata sp. n., and R. tenebra sp. n. All six species found in Southeast Asia are distinct from each other based on morphology; morphological delimitation of these species is further supported by and congruent with mOTUs generated from objective clustering of short fragment COI barcodes using the best close match criteria. Different castes and sexes of most species are described, including redescriptions of the queen of R. javana and male of R. johorensis. A key to the Southeast Asian species based on the worker caste is also provided. Variation among sympatric and also geographically distant populations, and the possibilities of cryptic species, are discussed.

 

References

  1. Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in ecology & evolution, 22, 148–155.

    https://doi.org/10.1016/j.tree.2006.11.004

    Doña, J., Diaz-Real, J., Mironov, S., Bazaga, P., Serrano, D. & Jovani, R. (2015) DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Molecular ecology resources, 15, 1216–1225.

    https://doi.org/10.1111/1755-0998.12384

    Donisthorpe, H. (1936) Rhopalomastix janeti (Hym. Formicidae) a species of ant new to science. The Entomologist’s Record and journal of variation, 48, 55–56.

    Emery, C. (1877) Catalogo delle formiche esistenti nelle collezioni del Museo Civico di Genova. Parte prima. Formiche provenienti dal Viaggio dei signori Antinori, Beccari e Issel nel Mar Rosso e nel paese dei Bogos. [concl.]. Annali del Museo civico di storia naturale, 9, 369–381.

    Emery, C. (1914) Intorno alla classificazione dei Myrmicinae. Rendiconti delle Sessioni della Reale Accademia delle Scienze dell’Istituto di Bologna. Classe di Scienze Fisiche, New Series, 18, 29–42.

    Emery, C. (1922) Hymenoptera. Fam. Formicidae. Subfam. Myrmicinae. [part]. Genera Insectorum, 174B, 95–206.

    Fisher, B.L. & Smith, M.A. (2008) A revision of Malagasy species of Anochetus Mayr and Odontomachus Latreille (Hymenoptera: Formicidae). PLoS ONE, 3, e1787.

    https://doi.org/10.1371/journal.pone.0001787

    Forel, A. (1900) Un nouveau genre et une nouvelle espèce de Myrmicide. Annales de la Société Entomologique de Belgique, 44, 24–26.

    Forel, A. (1911) Ameisen aus Ceylon, gesammelt von Prof. K. Escherich (einige von Prof. E. Bugnion)., Escherich, K. In: Forel, A. (Ed.), Termitenleben auf Ceylon. Gustav Fischer, Jena, pp. 215–228.

    Forel, A. (1917) Cadre synoptique actuel de la faune universelle des fourmis. Bulletin de la Société Vaudoise des Sciences Naturelles, 51, 229–253.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Molecular ecology resources, 13, 851–861.

    https://doi.org/10.1111/1755-0998.12138

    Hebert, P.D., Cywinska, A. & Ball, S.L. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313–321.

    https://doi.org/10.1098/rspb.2002.2218

    Hebert, P.D., Penton, E.H., Burns, J. M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.

    https://doi.org/10.1073/pnas.0406166101

    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30, 772–780.

    https://doi.org/10.1093/molbev/mst010

    Kranzfelder, P., Ekrem, T. & Stur, E. (2016) Trace DNA from insect skins: a comparison of five extraction protocols and direct PCR on chironomid pupal exuviae. Molecular ecology resources, 16, 353–363.

    https://doi.org/10.1111/1755-0998.12446

    Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T. & Machida, R.J. (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in zoology, 10, 34.

    https://doi.org/10.1186/1742-9994-10-34

    Liu, Q.H., Jiang, L.Y. & Qiao, G.X. (2013) DNA barcoding of Greenideinae (Hemiptera: Aphididae) with resolving taxonomy problems. Invertebrate systematics, 27, 428–438.

    https://doi.org/10.1071/IS13014

    Meier, R., Shiyang, K., Vaidya, G. & Ng, P.K. (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic biology, 55, 715–728.

    https://doi.org/10.1080/10635150600969864

    Meier, R., Wong, W., Srivathsan, A. & Foo, M. (2016) $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen‐rich samples. Cladistics, 32, 100–110.

    https://doi.org/10.1111/cla.12115

    Meier, R., Zhang, G. & Ali, F. (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology, 57, 809–813.

    https://doi.org/10.1080/10635150802406343

    Moe, A.M. & Weiblen, G.D. (2010) Molecular divergence in allopatric Ceratosolen (Agaonidae) pollinators of geographically widespread Ficus (Moraceae) species. Annals of the Entomological Society of America, 103, 1025–1037.

    https://doi.org/10.1603/AN10083

    Peeters, C., Foldi, I., Matile-Ferrero, D. & Fisher, B.L. (2017) A mutualism without honeydew: what benefits for Melissotarsus emeryi ants and armored scale insects (Diaspididae)? PeerJ, 5, e3599.

    https://doi.org/10.7717/peerj.3599

    Ross, K.G., Gotzek, D., Ascunce, M.S. & Shoemaker, D.D. (2009) Species delimitation: a case study in a problematic ant taxon. Systematic biology, 59, 162–184.

    https://doi.org/10.1093/sysbio/syp089

    Schlick-Steiner, B.C., Steiner, F.M., Moder, K., Seifert, B., Sanetra, M., Dyreson, E., Stauffer, C. & Christian, E. (2006) A multidisciplinary approach reveals cryptic diversity in Western Palearctic Tetramorium ants (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40, 259–273.

    https://doi.org/10.1016/j.ympev.2006.03.005

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30, 2725–2729.

    https://doi.org/10.1093/molbev/mst197

    Terayama, M. (1996) Taxonomic studies on the Japanese Formicidae, part 2. Seven genera of Ponerinae, Cerapachyinae and Myrmicinae. Nature and Human Activities, 1, 9–32.

    Terayama, M. (2009) A synopsis of the family Formicidae of Taiwan. Research Bulletin of Kanto Gakuen University, 17, 81–266.

    Wang, W.Y., Srivathsan, A., Foo, M., Yamane, Sk. & Meier, R. (2018) Sorting specimen‐rich invertebrate samples with cost‐effective NGS barcodes: validating a reverse workflow for specimen processing. Molecular ecology resources, 18, 490–501.

    https://doi.org/10.1111/1755-0998.12751

    Ward, P.S., Brady, S.G., Fisher, B.L. & Schultz, T.R. (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology, 40, 61–81.

    https://doi.org/10.1111/syen.12090

    Wheeler, G.C. & Wheeler, J. (1953) The ant larvae of the myrmicine tribes Melissotarsini, Metaponini, Myrmicariini, and Cardiocondylini. Journal of the Washington Academy of Sciences, 43, 185–189.

    Wheeler, W.M. (1910) Ants: their structure, development and behaviour. Columbia University Press, New York, XXV + 663 pp.

    Wheeler, W.M. (1922) Ants of the American Museum Congo expedition. A contribution to the myrmecology of Africa. VII. Keys to the genera and subgenera of ants. Bulletin of the American Museum of Natural History, 45, 631–710.

    Wheeler, W.M. (1929) The ant genus Rhopalomastix. Psyche, Cambridge, 36, 95–101.

    https://doi.org/10.1155/1929/60827

    Xu, Z. (1999) Systematic studies on the ant genera of Carebara, Rhopalomastix and Kartidris in China (Hymenoptera: Formicidae: Myrmicinae). Acta Biologica Plateau Sinica, 14, 129–136.

    Yong, G., Matile-Ferrero, D. & Peeters, C. (2018) Rhopalomastix is only the second ant genus known to live with diaspidid scale insects. Insectes Sociaux, 65. [in press]