Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-02-08
Page range: 286–300
Abstract views: 131
PDF downloaded: 89

A New Species of the Graphium (Pazala) mandarinus Group from Central Vietnam (Lepidoptera: Papilionidae)

Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650500, China Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
CNRS, UMR 5554 Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon 34095 Montpellier, France
Fauna & Flora International, Vietnam Programme, Hanoi, Vietnam
86/2 Moo 5, Tambon Nong Kwai, Hang Dong, Chiang Mai, Thailand
Lepidoptera Pazala mandarinus-group new species Vietnam Leptocircini

Abstract

The Graphium (Pazala) mandarinus group was recently defined and the status of taxa as well as the number of species was revised. We report here the discovery of a new species from Kon Tum plateau of the Truong Son (Annamite) Range of Central Vietnam, which we describe based on morphological and molecular evidence. Molecular phylogeny shows that the new taxon, G. (P.) wenlingae Hu, Cotton & Monastyrskii sp. nov., is sister to G. (P.) daiyuanae Hu, Zhang & Cotton, 2018 plus G. (P.) confucius Hu, Duan & Cotton, 2018. Molecular dating analysis further suggests that this new species diverged from its sister clade in the Pliocene (~3.5 million years ago). The new taxon constitutes the eighth and southernmost species of the mandarinus group.

 

References

  1. Averyanov, L.V., Phan, K.L., Nguyen, T.H. & Harder, D.K. (2003) Phytogeographic review of Vietnam and adjacent areas of eastern Indochina. Komarovia, 3, 1–83.

    Ayres, D.L., Darling, A., Zwickl, D.J., Beerli, P., Holder, M.T., Lewis, P.O., Huelsenbeck, J.P., Ronquist, F., Swofford, D.L., Cummings, M.P., Rambaut, A. & Suchard, M.A. (2012) BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology, 61, 170–173.

    https://doi.org/10.1093/sysbio/syr100

    Bertheau, C., Schuler, H., Krumböck, S., Arthofer, W. & Stauffer, C. (2011) Hit or miss in phylogenetic analyses: the case of the cryptic NUMTs. Molecular Ecology Resources, 11, 1056–1059.

    https://doi.org/10.1111/j.1755-0998.2011.03050.x

    Condamine, F.L., Sperling, F.A.H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G.J. (2012) What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 15, 267–277.

    https://doi.org/10.1111/j.1461-0248.2011.01737.x

    Folmer, O., Black, M.B., Hoch, W., Lutz, R.A. & Vrijehock, R.C. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclear Acids Symposium Series, 41, 95–98.

    Hu, S.J., Cotton, A.M., Condamine, F.L., Duan, K., Wang, R.J., Hsu, Y.F., Zhang, X. & Cao, J. (2018) Revision of Pazala Moore, 1888: the Graphium (Pazala) mandarinus (Oberthür, 1879) group, with treatments of known taxa and descriptions of new species and new subspecies (Lepidoptera: Papilionidae). Zootaxa, 4441, 401–446.

    https://doi.org/10.11646/zootaxa.4441.3.1

    Huelsenbeck, J.P., Larget, B. & Alfaro, M.E. (2004) Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Molecular Biology and Evolution, 21, 1123–1133.

    https://doi.org/10.1093/molbev/msh123

    Igarashi, S. & Fukuda, H. (2000) The Life Histories of Asian Butterflies. II . Univ. Press, Tokyo, 711 pp..

    Keppel, G., Van Niel, K.P., Wardell-Johnson, G.W., Yates, C.J., Byrne, M., Mucina, L., Schut, A.G.T., Hopper, S.D. & Franklin, S.E. (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21, 393–404.

    https://doi.org/10.1111/j.1466-8238.2011.00686.x

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    https://doi.org/10.1007/BF01731581

    Koiwaya, S. (1993) Description of three new genera, eleven new species and seven new subspecies of butterflies from China. Studies of Chinese Butterflies, 2, 43–111, pls. 9–27. [in Japanese with English descriptions]

    Kong, H.L., Condamine, F.L., Harris, A.J., Chen, J.L., Pan, B., Möller, M., Hoang, V.S. & Kang, M. (2017) Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Molecular Ecology, 26, 6414–6429.

    https://doi.org/10.1111/mec.14367

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

    https://doi.org/10.1093/molbev/msw260

    Lepage, T., Bryant, D., Philippe, H. & Lartillot, N. (2007) A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24, 2669–2680.

    https://doi.org/10.1093/molbev/msm193

    Li, K.Q., Wang, Y.Z., Dong, D.Z. & Zhang, L.K. (2015) Catalog of insect type specimens preserved at the Kunming Institute of Zoology, Chinese Academy of Science with corrections of some specimens. Zoological Research, 36, 263–284.

    https://doi.org/10.13918/j.issn.2095-8137.2015.5.263

    Miller, M.A., Schwartz, T., Pickett, B.E., He, S., Klem, E.B., Scheuermann, R.H., Passarotti, M., Kaufman, S. & O’Leary, M.A. (2015) A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evolutionary Bioinformatics Online, 11, 43–48.

    https://doi.org/10.4137/EBO.S21501

    Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.

    https://doi.org/10.1093/molbev/mst024

    Monastyrskii, A.L. (2007) Butterflies of Vietnam. Papilionidae. Vol. 2. Dolphin Media, 158 pp.

    Monastyrskii, A.L. (2010) On the origin of the recent fauna of butterflies (Lepidoptera, Rhopalocera) of Vietnam. Entomology Review, 90, 39–58.

    https://doi.org/10.1134/S0013873810010045

    Monastyrskii, A.L. & Devyatkin, A.L. (2000) New taxa and new records of butterflies from Vietnam (Lepidoptera, Rhopalocera). Atalanta, 31 (3/4), 471–492.

    Monastyrskii, A.L. & Devyatkin, A.L. (2003) Butterflies of Vietnam (an Illustrated checklist). Thong Nhat Printing House, 56 pp., 14 pls.

    Monastyrskii, A.L. & Holloway, J.D. (2013) Chapter 5. The Biogeography of the Butterfly Fauna of Vietnam With a Focus on the Endemic Species (Lepidoptera). In: Sivia-Opps, M. (Ed.), Current Progress in Biological Research. IntechOpen, Rijeka, pp. 95–123.

    Monastyrskii, A.L. & Devyatkin, A.L. (2015) Butterflies of Vietnam (An Illustrated Checklist). 2nd Edition. Planorama Media Co., Ltd., Hanoi, 59 pp.

    Mutanen, M., Kivelä, S.M., Vos, R.A., Doorenweerd, C., Ratnasingham, S., Hausmann, A., Huemer, P., Dincă, V., van Nieukerken, E.J., Lopez-Vaamonde, C., Vila, R., Aarvik, L., Decaëns, T., Efetov, K.A., Hebert, P.D.N., Johnsen, A., Karsholt O., Pentinsaari, M., Rougerie, R., Segerer, A., Tarmann, G., Zahiri, R. & Godfray, H.C.J. (2016) Species-level para- and polyphyly in DNA barcode gene trees: strong operational bias in European Lepidoptera. Systematic Biology, 65, 1024–1040.

    https://doi.org/10.1093/sysbio/syw044

    Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

    https://doi.org/10.1093/molbev/msu300

    O’Neill, S.L., Giordano, R., Colbert, A.M.E., Karr, T.L. & Robertson, H.M. (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences of the United States of America, 89, 2699–2702.

    https://doi.org/10.1073/pnas.89.7.2699

    Racheli, T. & Cotton, A.M. (2009) Guide to the Butterflies of the Palearctic Region. Papilionidae. Part I. Milano, Omnes Artes, 70 pp.

    Rehm, P., Borner, J., Meusemann, K., von Reumont, B.M., Simon, S., Hadrys, H., Misof, B. & Burmester, T. (2011) Dating the arthropod tree based on large-scale transcriptome data. Molecular Phylogenetics and Evolution, 61, 880–887.

    https://doi.org/10.1016/j.ympev.2011.09.003

    Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    https://doi.org/10.1093/sysbio/sys029

    Schenk, J.J. (2016) Consequences of secondary calibrations on divergence time estimates. PLoS ONE, 11, e0148228.

    https://doi.org/10.1371/journal.pone.0148228

    Smith, C.R. (2005) Why we are studying Oriental Graphium (Lepidoptera: Papilionidae) at the Natural History Museum, London. In: Yata, O. (Ed.), A Report on Insect Inventory Project in Tropic Asia (TAIIV) "Network construction for the establishment of insect inventory in Tropic Asia (TAIIV)". Kyushu University, Fukuoka, pp. 49–56.

    Smith, C.R. & Vane-Wright, R.I. (2001) A review of the Afrotropical species of the genus Graphium (Lepidoptera: Rhopalocera: Papilionidae). Bulletin of the British Museum (Natural History) Entomology, 70, 503–719.

    Song, H., Buhay, J.E., Whiting, M.F. & Crandall, K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491.

    https://doi.org/10.1073/pnas.0803076105

    Stewart, J.R. & Lister, A.M. (2001) Cryptic northern refugia and the origins of the modern biota. TRENDS in Ecology & Evolution, 16, 608–613.

    https://doi.org/10.1016/s0169-5347(01)02338-2

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    https://doi.org/10.1093/molbev/mst197

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclear Acids Research, 22, 4673–4680.

    https://doi.org/10.1093/nar/22.22.4673

    Thorne, J.L. & Kishino, H. (2002) Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51, 689–702.

    https://doi.org/10.1080/10635150290102456

    Thorne, J.L., Kishino, H. & Painter, I.S. (1998) Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15, 1647–1657.

    https://doi.org/10.1093/oxfordjournals.molbev.a025892

    Woodruff, D.S. (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity Conservation, 19, 919–941.

    https://doi.org/10.1007/s10531-010-9783-3

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    https://doi.org/10.1126/science.1059412