Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-03-18
Page range: 477–514
Abstract views: 115
PDF downloaded: 5

Bioclimatic characterization of the world areas of Endemism identified for Mammals

Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico.
Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico. Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico.
Grupo Evolución y Sistemática Tropical, Departamento de Biología y Química, Universidad de Sucre, Carrera 28 No. 5-267, Barrio Puerta Roja. Sincelejo, Colombia.
Mammalia biomes climate distribution endemics regionalization patterns

Abstract

Areas of endemism (AoE) are identified by the congruence of two or more geographic distribution areas. They represent patterns of distribution resulting from ecological and evolutionary processes and constitute the basic units of biogeographic regionalizations; however, they are not usually environmentally characterized. The 54 world areas of endemism identified for terrestrial mammals were bioclimatically characterized by climate and biome type, using two diversity indices. The climatic characterization shows that tropical climates, mainly Aw (equatorial savannah with dry winter) and Af (equatorial rainforest, fully humid) were the most frequent; included in 32 areas of endemism. The most frequent biomes were the tropical and subtropical moist broadleaf forests, which grow at low altitudes. Most of the endemic taxa are located in lowlands, frequently from 0 to 1,000 m of altitude. Our results suggest that AoE are concentrated in tropical latitudes; however, we did not find any correlation between the homogeneity of the climate or the biome and the number of endemic taxa within each AoE. Therefore, we suggest that these AoE could have been mainly shaped by tectonic events, combined with environmental influence.

 

References

  1. Noguera- Beck, C., Grieser, J., Kottek, M., Rubel, F. & Rudolf, B. (2005) Characterizing global climate change by means of köppen climate classification. Klimastatusbericht, 51, 139–149.

    Danielson, J. & Gesch, D. (2011) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 pp.

    https://doi.org/10.3133/ofr20111073

    Dong-June, Y. & Ji Hong, K. (2011) Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. Forest Science and Technology, 7 (2), 68–74.

    https://doi.org/10.1080/21580103.2011.573940

    Escalante, T. (2009) Un ensayo sobre regionalización biogeográfica. Revista Mexicana de Biodiversidad, 80, 551–560.

    Escalante, T. (2017) A natural regionalization of the world based on primary biogeographic homology of terrestrial mammals. Biological Journal of the Linnean Society, 120, 349–362.

    Escalante, T., Rodríguez, G. & Morrone, J.J. (2004) The diversification of Nearctic mammals in the Mexican Transition Zone. Biological Journal of the Linnean Society, 83, 327–339.

    https://doi.org/10.1111/j.1095-8312.2004.00386.x

    Espinosa, D., Aguilar, C. & Escalante, T. (2001) Endemismo, áreas de endemismo y regionalización biogeográfica. In: Llorente, J. & Morrone J.J. (Eds.), Introducción a la biogeografía en Latinoamérica: teorías, conceptos, métodos y aplicaciones. Las Prensas de Ciencias, UNAM, Mexico City, pp. 167–172.

    Fattorini, S., Dapporto, L., Strona, G. & Borges, P.A.V. (2015) Calling for a new strategy to measure environmental (habitat) diversity in Island Biogeography: A case study of Mediterranean Tenebrionids (Coleoptera: Tenebrionidae). Fragmenta Entomologica, 47 (1), 1–14.

    https://doi.org/10.4081/fe.2015.129

    Ferro, I. & Morrone, J.J. (2014) Biogeographical transition zones: A search for conceptual synthesis. Biological Journal of the Linnean Society, 113 (1), 1–12.

    https://doi.org/10.1111/bij.12333

    Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131–137.

    https://doi.org/10.1126/science.165.3889.131

    Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.

    Hayek, L. & Buzas, M. (2010) Surveying natural populations: Quantitative tools for assessing biodiversity. Columbia University Press, New York, 616 pp.

    https://doi.org/10.7312/haye14620

    Heads, M.J. (2004) What is a node? Journal of Biogeography, 31, 1883–1891.

    https://doi.org/10.1111/j.1365-2699.2004.01201.x

    Heino, J., Melo, A.S. & Bini, L.M. (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology, 60, 223–235.

    https://doi.org/10.1111/fwb.12502

    Jost, L. (2006) Entropy and diversity. Oikos, 113, 363–375.

    https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15 (3), 259–263.
    https://doi.org/10.1127/0941-2948/2006/0130

    Lein, J.K. (2012) Environmental Sensing: Analytical Techniques for Earth Observation, Springer, New York, 334 pp.

    https://doi.org/10.1007/978-1-4614-0143-8

    McGarigal, K. (2015) FRAGSTATS Help. Amherst, University of Massachusetts, Amherst. 182 pp.

    Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S. & Rillig, M.C. (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and evolution, 4 (18), 3514–24.

    https://doi.org/10.1002/ece3.1155

    Morrone, J.J. (1994) On the identifications of areas of endemism. Systematic Biology, 43 (3), 438–441.

    https://doi.org/10.1093/sysbio/43.3.438

    Morrone, J.J. (2015). Biogeographical regionalisation of the world: A reappraisal. Australian Systematic Botany, 28, 81–90.

    https://doi.org/10.1071/SB14042

    Morrone, J.J. & Escalante, T. (2009) Diccionario de biogeografía. Las Prensas de Ciencias, UNAM, México, D. F., 230 pp.

    Morrone, J.J. & Escalante, T. (2016) Introducción a la biogeografía. Las Prensas de Ciencias, UNAM, Ciudad de México. 315 pp.

    Nagendra, H. (2002) Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22 (2), 175–186.

    https://doi.org/10.1016/S0143-6228(02)00002-4

    Urbano, E.A. (2016) Areas of endemism: travelling through space and the unexplored dimension. Systematics and Biodiversity, 14, 131–139.

    https://doi.org/10.1080/14772000.2015.1135196

    Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S.B., Linder, H.P. & Schneeweiss, G.M. (2018) Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Scientific Reports, 8, 10345.

    https://doi.org/10.1038/s41598-018-28504-9

    Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience, 51 (11), 933–938.

    https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Ruggiero, A. & Ezcurra, C. (2003) Regiones y transiciones biogeográficas: Complementariedad de los análisis en biogeografía histórica y ecológica. In: Morrone, J.J. & Llorente, J. (Eds.), Una perspectiva latinoamericana de la biogeografía, Las Prensas de Ciencias, UNAM, Mexico City, pp. 141–154.

    Sanderson, M. (1999) The classification of climates from Pythagoras to Koeppen. Bulletin of the American Meteorological Society, 80, 669–673.

    https://doi.org/10.1175/1520-0477(1999)080<0669:TCOCFP>2.0.CO;2

    Simpson, E. (1949) Measurement of diversity. Nature, 163, 688.

    https://doi.org/10.1038/163688a0

    Stein, A., Gerstner, K. & Kreft, H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology letters, 17, 866–880.

    https://doi.org/10.1111/ele.12277

    Téllez, O., Hutchinson, M.A., Nix, H.A. & Jones, P. (2011) Desarrollo de coberturas climáticas para México. In: Sánchez-Rojas, G., Pavón, N. P. & Ballesteros, C. (Eds.), Cambio climático: aproximaciones para el estudio de sus efectos en la Biodiversidad. Universidad Autónoma del Estado de Hidalgo, México, pp. 15–23.

    USGS (2010) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Data available from the U.S. Geological Survey. Available from: https://lta.cr.usgs.gov/GMTED2010 (accessed October 2018)

    WWF (2000) Terrestrial Biomes. World Wide Fund for Nature. Available from: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world (accessed October 2018)