Abstract
Actias selene (Hübner) is an important silk-spinning moth. Like other moths, it has innate immunity but no acquired immunity. However, there are few studies on immune-related genes of A. selene. Here, differential expression RNAseq experiment was employed to examine the genes related to different metabolic pathways and to explore the immune mechanism of the A. selene post Beauveria bassiana (Bb) and Micrococcus luteus (ML) stimuli. A total of 64,372,921 clean reads were obtained and 39,057 differentially expressed genes (DEGs) were identified. In the Bb vs. PBS group (PBS as the control), 9,092 genes were up-regulated and 4,438 genes were down-regulated; in the ML vs. PBS group, 5,903 genes were up-regulated and 5,175 genes were down-regulated. The KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses of DEGs confirmed that many DEGs were associated with "Metabolism pathway", "cellular process", "cell" and "catalytic activity". Among them, 194 and 149 differentially expressed genes were related to immunity in the Bb vs. PBS group and ML vs. PBS group, respectively. We verified the reliability of the data with reverse transcription quantitative real-time PCR analysis of randomly selected genes. Furthermore, the phylogenetic tree results showed that HSP90, PGRP and MyD88 genes of A. selene were most closely related to Antheraea pernyi (Guérin-Méneville). These results will provide an overview of the molecular mechanism of A. selene resistance to fungal and bacterial infections as well as an evolutionary aspect of these genes. Moreover, the interrelated trophic mechanisms among different groups of organisms are vital to explore, thus this study will lay a foundation for further studies on the innate immune mechanism of saturniid moths, and provide important theoretical basis for studying the relationship between A. selene and other species.
References
Ansorge, W.J. (2009) Next-generation DNA sequencing techniques. Nature Biotechnology, 25 (4), 195–203.
https://doi.org/10.1016/j.nbt.2008.12.009Asea, A., Rehli, M., Kabingu, E., Boch, J.A., Bare, O., Auron, P.E., Stevenson, M.A. & Calderwood, S.K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. Journal of Biological Chemistry, 277 (17), 15028–15034.
https://doi.org/10.1074/jbc.M200497200Basu, S. & Srivastava, P.K. (2000) Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones, 5 (5), 443–451.
https://doi.org/10.1379/1466-1268(2000)005<0443:HSPTFO>2.0.CO;2
Boman, H.G. & Hultmark, D. (1987) Cell-free immunity in insects. Annual Review Microbiology, 41, 103–126.
http://doi.org/10.1146/annurev.mi.41.100187.000535Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R. & Apweiler, R. (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Research, 32 (Database Issue), D262–266.
https://doi.org/10.1093/nar/gkh021Chen, M.M., Li, Y., Chen, M., Wang, H., Li, Q., Xia, R.X., Zeng, C.Y., Li, Y.P., Liu, Y.Q. & Qin, L. (2014) Complete mitochondrial genome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae) and the phylogenetic relationship of Saturniidae species. Gene, 545 (1), 95–101.
https://doi.org/10.1016/j.gene.2014.05.002Chen, X., Hu, Y., Zheng, H., Cao, L., Niu, D., Yu, D., Sun, Y., Hu, S. & Hu, F. (2012) Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochemistry & Molecular Biology, 42 (9), 665–673.
https://doi.org/10.1016/j.ibmb.2012.05.004Chen, Y.-R., Jiang, T., Zhu, J., Xie, Y.-C., Tan, Z.-C., Chen, Y.-H., Tang, S.-M., Hao, B.-F., Wang, S.-P., Huang, J.-S. & Shen, X.-J. (2017) Transcriptome sequencing reveals potential mechanisms of diapause preparation in bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 24, 68–78.
https://doi.org/10.1016/j.cbd.2017.07.003Chetia, H., Kabiraj, D., Singh, D., Mosahari, P.V., Das, S., Sharma, P., Neog, K., Sharma, S., Jayaprakash, P. & Bora, U. (2017) De novo transcriptome of the muga silkworm, Antheraea assamensis (Helfer). Gene, 611 54–65.
https://doi.org/10.1016/j.gene.2017.02.021Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M. & Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21 (18), 3674–3676.
https://doi.org/10.1093/bioinformatics/bti610Dai, L.-S., Qian, C., Wang, L., Wei, G.-Q., Liu, Q.-N., Sun, Y., Zhang, C.-F., Li, J., Liu, D.-R., Zhu, B.-J. & Liu, C.-L. (2015) Characterization and function of a short peptidoglycan recognition protein from the Chinese oak silkworm, Antheraea pernyi. Journal of Asia-Pacific Entomology, 18 (4), 701–707.
https://doi.org/10.1016/j.aspen.2015.08.003Fang, S.L., Wang, L., Fang, Q., Chen, C., Zhao, X.S., Qian, C., Wei, G.Q., Zhu, B.J. & Liu, C.L. (2017) Characterization and functional study of a Cecropin-like peptide from the Chinese oak silkworm, Antheraea pernyi. Archives of Insect Biochemistry & Physiology, 94 (1), e21368.
https://doi.org/10.1002/arch.21368Ferre, R., Melo, M.N., Correia, A.D., Feliu, L., Bardaji, E., Planas, M. & Castanho, M. (2009) Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophysical Journal, 96 (5), 1815–1827.
https://doi.org/10.1016/j.bpj.2008.11.053Gazara, R.K., Cardoso, C., Bellieny-Rabelo, D., Ferreira, C., Terra, W.R. & Venancio, T.M. (2017) De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene, 627, 85–93.
https://doi.org/10.1016/j.gene.2017.06.008Gillespie, J.P., Kanost, M.R. & Trenczek, T. (1997) Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643.
https://doi.org/10.1146/annurev.ento.42.1.611Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. & Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644.
https://doi.org/10.1038/nbt.1883Guo, X.-j. & Feng, J.-n. (2018) Comparisons of Expression Levels of Heat Shock Proteins (hsp70 and hsp90) From Anaphothrips obscurus (Thysanoptera: Thripidae) in Polymorphic Adults Exposed to Different Heat Shock Treatments. Journal of Insect Science, 18 (3), 15–15.
https://doi.org/10.1093/jisesa/iey059Huang, S., Yang, H., Chen, X., Zhang, J. & Huang, L. (2018) Genomic transcriptional response to 20-hydroxyecdysone in the fat body of silkworm, Bombyx mori. Gene Reports, 13, 134–140.
https://doi.org/10.1016/j.genrep.2018.09.009Iordanskiy, S., Zhao, Y., Dubrovsky, L., Iordanskaya, T., Chen, M., Liang, D. & Bukrinsky, M. (2004) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. Journal of Virology, 78 (18), 9697–9704.
https://doi.org/10.1128/jvi.78.18.9697-9704.2004Julian, L. & Olson, M.F. (2014) Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases, 5 e29846.
https://doi.org/10.4161/sgtp.29846Kaneko, T., Goldman, W.E., Mellroth, P., Steiner, H., Fukase, K., Kusumoto, S., Harley, W., Fox, A., Golenbock, D. & Silverman, N. (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity, 20 (5), 637–649.
https://doi.org/10.1016/S1074-7613(04)00104-9Kim, J.G., Moon, M.Y., Kim, H.J., Li, Y., Song, D.K., Kim, J.S., Lee, J.Y., Kim, J., Kim, S.C. & Park, J.B. (2012) Ras-related GTPases Rap1 and RhoA collectively induce the phagocytosis of serum-opsonized zymosan particles in macrophages. Journal of Biological Chemistry, 287 (7), 5145–5155.
https://doi.org/10.1074/jbc.M111.257634Kitching, I. & Rawlins, J. (1998) Handbook of Zoology. In: Kristensen, N.P. (Ed.), Lepidoptera, Moths and Butterflies. Vol. 1. Evolution, Systematics and Biogeography. Walter de Gruyter, Berlin, pp. 355–401.
Liu, Q.-N., Zhu, B.-J., Dai, L.-S., Wei, G.-Q. & Liu, C.-L. (2012) The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene, 505 (2), 291–299.
https://doi.org/10.1016/j.gene.2012.06.003Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 (4), 402–408.
https://doi.org/10.1006/meth.2001.1262Lu, D., Geng, T., Hou, C., Huang, Y., Qin, G. & Guo, X. (2016) Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene, 583 (1), 29–35.
https://doi.org/10.1016/j.gene.2016.02.045Luan, J.B., Li, J.M., Varela, N., Wang, Y.L., Li, F.F., Bao, Y.Y., Zhang, C.X., Liu, S.S. & Wang, X.W. (2011) Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. Journal of Virology, 85 (7), 3330–3340.
https://doi.org/10.1128/jvi.02507-10Ma, J., Xue, Y., Cui, W., Li, Y., Zhao, Q., Ye, W., Zheng, J., Cheng, Y., Ma, Y., Li, S., Han, T., Miao, L., Yao, L., Zhang, J. & Liu, W. (2012) Ras homolog gene family, member A promotes p53 degradation and vascular endothelial growth factor-dependent angiogenesis through an interaction with murine double minute 2 under hypoxic conditions. Cancer, 118 (17), 4105–4116.
https://doi.org/10.1002/cncr.27393Mason, F.M., Xie, S., Vasquez, C.G., Tworoger, M. & Martin, A.C. (2016) RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. Journal of Cell Biology, 214 (5), 603–617.
https://doi.org/10.1083/jcb.201603077Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5 (7), 621–628.
https://doi.org/10.1038/nmeth.1226Nazario-Toole, A.E. & Wu, L.P. (2017) Phagocytosis in Insect Immunity. In: Ligoxygakis, P. (Ed.) Advances in Insect Physiology. Academic Press, Cambridge, Massachusetts, pp. 35–82.
https://doi.org/10.1016/bs.aiip.2016.12.001Patnaik, B.B., Patnaik, H.H., Seo, G.W., Jo, Y.H., Lee, Y.S., Lee, B.L. & Han, Y.S. (2014) Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection. Developmental & Comparative Immunology, 46 (2), 208–221.
https://doi.org/10.1016/j.dci.2014.04.009Pili-Floury, S., Leulier, F., Takahashi, K., Saigo, K., Samain, E., Ueda, R. & Lemaitre, B. (2004) In Vivo RNA Interference Analysis Reveals an Unexpected Role for GNBP1 in the Defense against Gram-positive Bacterial Infection in Drosophila Adults. Journal of Biological Chemistry, 279 (13), 12848–12853.
https://doi.org/10.1074/jbc.M313324200Qian, C., Wang, F., Zhu, B.-J., Wei, G.-Q., Li, S., Liu, C.-L. & Wang, L. (2016) Identification and characterization of an Apolipophorin-III gene from Actias selene Hübner (Lepidoptera: Saturniidae). Journal of Asia-Pacific Entomology, 19 (1), 103–108.
https://doi.org/10.1016/j.aspen.2015.12.008Qian, C., Wang, F., Zhu, B.-J., Wei, G.-Q., Sun, Y., Li, S., Wang, L. & Liu, C.-L. (2015) Identification and expression analysis of a novel defense gene from Actias selene. Oriental Insects, 49 (3–4), 264–274.
https://doi.org/10.1080/00305316.2015.1081648Qian, C., Wang, F., Zhu, B., Wang, L., Wei, G., Sun, Y., Li, S. & Liu, C. (2017a) Identification of a hemolin protein from Actias selene mediates immune response to pathogens. International Immunopharmacology, 42, 74–80.
https://doi.org/10.1016/j.intimp.2016.11.020Qian, C., Wang, F., Zhu, B., Wang, L., Wei, G., Sun, Y., Li, S. & Liu, C. (2017b) Identification of a hemolin protein from Actias selene mediates immune response to pathogens. Int Immunopharmacol, 42, 74–80.
https://doi.org/10.1016/j.intimp.2016.11.020Romualdi, C., Bortoluzzi, S., D'Alessi, F. & Danieli, G.A. (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12 (2), 159–162.
https://doi.org/10.1152/physiolgenomics.00096.2002Royet, J., Reichhart, J.M. & Hoffmann, J.A. (2005) Sensing and signaling during infection in Drosophila. Current Opinion Immunology, 17 (1), 11–17.
https://doi.org/10.1016/j.coi.2004.12.002Schofield, A.V. & Bernard, O. (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Critical Reviews in Biochemistry and Molecular Biology, 48 (4), 301–316.
https://doi.org/10.3109/10409238.2013.786671Stanley, D. (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annual Review of Entomology, 51, 25–44.
https://doi.org/10.1146/annurev.ento.51.110104.151021Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28 (10), 2731–2739.
https://doi.org/10.1093/molbev/msr121Tang, Q.Y. & Zhang, C.X. (2013) Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Scencei, 20 (2), 254–260.
https://doi.org/10.1111/j.1744-7917.2012.01519.xTauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J.A. & Imler, J.L. (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunology, 3 (1), 91–97.
https://doi.org/10.1038/ni747Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (24), 4876–4882.
https://doi.org/10.1093/nar/25.24.4876
Vabulas, R.M., Braedel, S., Hilf, N., Singh-Jasuja, H., Herter, S., Ahmad-Nejad, P., Kirschning, C.J., Da Costa, C., Rammensee, H.G., Wagner, H. & Schild, H. (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. Journal of Biological Chemistry, 277 (23), 20847–20853.
https://doi.org/10.1074/jbc.M200425200Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26 (1), 136–138.
https://doi.org/10.1093/bioinformatics/btp612Wang, L., Li, Z., Du, C., Chen, W. & Pang, Y. (2007) Characterization and expression of a cecropin-like gene from Helicoverpa armigera. Comparative Biochemistry & Physiology Part B, 148 (4), 417–425.
https://doi.org/10.1016/j.cbpb.2007.07.010Wang, X.Y., Yu, H.Z., Geng, L., Xu, J.P., Yu, D., Zhang, S.Z., Ma, Y. & Fei, D.Q. (2016) Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV in Susceptible and Near-Isogenic Resistant Strains. PLOS ONE, 11 (5), e0155341.
https://doi.org/10.1371/journal.pone.0155341Wei, R.Y., Bai, J., Zhao, M.F., Xu, B., Li, W.J., Wei, F.X., Xi, Y.Y. & Li, S.Y. (2017) Anti-inflammatory activity of cecropin-A2 from Musca domestica. Microbial Pathogenesis, 110, 637–644.
https://doi.org/10.1016/j.micpath.2017.07.032Xu, Y., Zhou, W., Zhou, Y., Wu, J. & Zhou, X. (2012) Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horvath) in response to southern rice black-streaked dwarf virus. PLoS One, 7 (4), e36238.
https://doi.org/10.1371/journal.pone.0036238Yu, H.-Z., Wang, J., Zhang, S.-Z., Toufeeq, S., Li, B., Li, Z., Yang, L.-A., Hu, P. & Xu, J.-P. (2018a) Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection. Journal of Invertebrate Pathology, 159, 61–70.
https://doi.org/10.1016/j.jip.2018.10.009Yu, H.-Z., Wang, J., Zhang, S.-Z., Toufeeq, S., Li, B., Li, Z., Yang, L.-A., Hu, P. & Xu, J.-P. (2018b) Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection. Journal of Invertebrate Pathology, 159, 61–70.
https://doi.org/10.1016/j.jip.2018.10.009Zhang, C., Wang, L., Wei, G., Qian, C., Dai, L., Sun, Y., Zhu, B.J. & Liu, C.L. (2015) Small Heat Shock Proteins and Eicosanoid Pathways Modulate Caspase-1 Activity in the Fat Bodies of Antheraea pernyi. bioRxiv. [published online]
https://doi.org/10.1101/026039Zhang, C., Zhu, B., Dai, L.S., Liu, C. & Luo, X. (2016) Nucleopolyhedroviruses (NPV) induce the expression of small heat shock protein 25.4 in Antheraea pernyi. Gene, 591 (2), 327–332.
https://doi.org/10.1016/j.gene.2016.06.004Zhang, N., Zhang, H.J., Zhao, B., Sun, Q.Q., Cao, Y.Y., Li, R., Wu, X.X., Weeda, S., Li, L., Ren, S., Reiter, R.J. & Guo, Y.D. (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 56 (1), 39–50.
https://doi.org/10.1111/jpi.12095Zhang, S.Z., Yu, H.Z., Deng, M.J., Ma, Y., Fei, D.Q., Wang, J., Li, Z., Meng, Y. & Xu, J.P. (2018) Comparative transcriptome analysis reveals significant metabolic alterations in eri-silkworm (Samia cynthia ricini) haemolymph in response to 1-deoxynojirimycin. PLoS ONE, 13 (1), e0191080.
https://doi.org/10.1371/journal.pone.0191080Zhao, S., Wang, X., Cai, S., Zhang, S., Luo, H., Wu, C., Zhang, R. & Zhang, J. (2018) A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi. Developmental & Comparative Immunology, 86, 78–85.
https://doi.org/10.1016/j.dci.2018.04.009