Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-05-24
Page range: 519–547
Abstract views: 291
PDF downloaded: 4

Contrasting genetic, acoustic, and morphological differentiation in two closely related gladiator frogs (Hylidae: Boana) across a common Neotropical landscape

Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 90619-900, Brasil. Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
Departamento Ciências Biológicas, Museu de Zoologia, Universidade Estadual de Feira de Santana, Brasil.
Laboratório de Anuros Neotropicais, Universidade Federal de Uberlândia, ICEMP, Ciências Biológicas, rua 20, nº 1.600, Bairro Tupã, Ituiutaba, MG, Brasil.
Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia.
Laboratorio de Biogeografía, Escuela de Geografía, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes, Mérida, 5101, Venezuela.
Amphibia Anura bioacoustics Cordillera de Mérida cryptic species diversity Guiana Shield molecular phylogenetics phylogeography Venezuela

Abstract

Mountain chains and rivers are often found to represent barriers promoting vicariant differentiation in terrestrial vertebrates. Previous studies have supported the idea that the Cordillera de Mérida (CM), the easternmost branch of the Northern Andes, represents a geographic barrier for vertebrates, including frogs. Previous studies have also suggested that the Orinoco River (OR), the biggest river in Venezuela, also represents a geographic barrier for terrestrial vertebrates. Boana pugnax and B. xerophylla are two Neotropical hylids, members of the B. faber species group, that are distributed on either side of the CM, and whose ranges extend up to 605 and 2450 m in elevation, respectively. In addition, B. xerophylla occurs on either side of the OR. Herein, we assess the genetic, acoustic, and morphological differentiation within B. pugnax and within B. xerophylla across the CM and within B. xerophylla across the OR, and test if genetic differentiation is correlated with geographic distance. We also evaluated the acoustic differentiation between the recently recognized B. xerophylla and its sister species, B. crepitans, and found marked differences between advertisement calls, corroborating their status as distinct species. Genetic and morphometric analyses of populations from opposite sides of the CM revealed differentiation in B. pugnax but not in B. xerophylla. Within the latter species, we found molecular, acoustic, and morphometric differentiation among samples of B. xerophylla from western Venezuela versus the Guiana Shield. Genetic variation within B. pugnax and within B. xerophylla was not explained by geographic distance. Thus, our data show conspecific population structure across the CM in B. pugnax, plus the possible existence of two species within what today is considered B. xerophylla, yet the CM apparently is not involved in this divergence. These results suggest that even for closely related species with shared ecology and distribution, genetic and phenotypic differentiation respond differently to common ecological or historical factors.

 

References

  1. Acevedo, A.A., Lampo, M. & Cipriani, R. (2016) The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. Zootaxa, 4103 (6), 574–586.

    https://doi.org/10.11646/zootaxa.4103.6.7

    Angulo, A. & Reichle, S. (2008) Acoustic signals, species diagnosis, and species concepts: the case of a new cryptic species of Leptodactylus (Amphibia, Anura, Leptodactylidae) from the Chapare region, Bolivia. Zoological Journal of the Linnean Society, 152, 59–77.

    https://doi.org/10.1111/j.1096-3642.2007.00338.x

    Archer, E. (2014) rfPermute: Estimate Permutation p-values for Random Forest Importance Metrics. R package. Version 1.6.1. Package on R software. Available from: http://CRAN.R-project.org/package=rfPermute (accessed 20 March 2019) [archived by WebCite at http://www.webcitation.org/6gERsK0m8 on 23 March 2016]

    Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I. & Stockinger, H. (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40, W597–W603.

    https://doi.org/10.1093/nar/gks400

    Ataroff, M. & Sarmiento, L. (2004) Las unidades ecológicas de los Andes de Venezuela. In: La Marca, E. & Soriano, P. Reptiles de Los Andes de Venezuela. Fundación Polar, Codepre-ULA, Fundacite-Mérida, Fundación BIOGEOS, Mérida, pp. 9–26.

    Ayres, J.M. & Clutton-Brock, T.H. (1992) River boundaries and species range size in Amazonian primates. The American Naturalist, 140, 531–537.
    https://doi.org/10.1086/285427

    Bernal, M.H. & Lynch, J.D. (2013) Thermal tolerance in anuran embryos with different reproductive modes: relationship to altitude. The Scientific World Journal, Article ID 183212, 1–7.

    https://doi.org/10.1155/2013/183212

    Berneck, B.V., Haddad, C.F., Lyra, M.L., Cruz, C.A. & Faivovich, J. (2016) The Green Clade grows: A phylogenetic analysis of Aplastodiscus (Anura; Hylidae). Molecular Phylogenetics and Evolution, 97, 213–223.

    https://doi.org/10.1016/j.ympev.2015.11.014

    Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–155.

    https://doi.org/10.1016/j.tree.2006.11.004

    Blomberg, S.P., Garland Jr., T. & Ives, A.R. (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717–745.

    https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Bonnet, E. & Van de Peer, Y. (2002) Zt: A sofware tool for simple and partial mantel tests. Journal of Statistical software, 7, 1.

    https://doi.org/10.18637/jss.v007.i10

    Boul, K.E., Funk, W.C., Darst, C.R., Cannatella, D.C. & Ryan, M.J. (2007) Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society of London B: Biological Sciences, 274, 399–406.

    https://doi.org/10.1098/rspb.2006.3736

    Breiman, L. (2001) Random Forests. Machine Learning, 45, 5–32.

    https://doi.org/10.1023/a:1010933404324

    Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel, A.R. (Ed.), Molecular genetic analysis of populations: A practical approach. IRL Press, Oxford, pp. 225–270.

    Caldwell, J.P. (1992) Diversity of reproductive modes in anurans: facultative nest construction in gladiator frogs. In: Hamlet, W.C. (Ed.), Reproductive biology of South American vertebrates. Springer, New York, pp. 85–97.

    https://doi.org/10.1007/978-1-4612-2866-0_6

    Casal, F.C. & Juncá, F.A. (2008) Girino e canto de anúncio de Hypsiboas crepitans (Amphibia: Anura: Hylidae) do estado da Bahia, Brasil, e considerações taxonómicas. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais, 3, 217–224.

    Chacón-Ortiz, A., De Pascual, A.D. & Godoy, F. (2004) Aspectos reproductivos y desarrollo larval de Hyla pugnax (Anura: Hylidae) en el piedemonte andino de Venezuela. Revista de la Academia Colombiana de Ciencias, 28, 391–402.

    Córdova, J. & González, M. (2007) Hidrografía, cuencas y recursos hídricos. In: Cunill, P. (Ed.), Geo Venezuela. Vol. 2. Medio Físico y Recursos Ambientales. Fundación Empresas Polar, Caracas, pp. 330–400.

    Coyne, J.A. & Orr, H.A. 2004. Speciation. Sinauer, Sunderland, Massachusetts, 545 pp.

    Crawford, A.J., Lips, K.R. & Bermingham, E. (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proceedings of the National Academy of Sciences of the United States of America, 107, 13777–13782.

    https://doi.org/10.1073/pnas.0914115107

    Crocoft, R. & Ryan, M. (1995) Patterns of advertisement call evolution in toads and chorus frogs. Animal Behavior, 49, 283–303.

    https://doi.org/10.1006/anbe.1995.0043

    Darst, C.R. & Cannatella, D.C. (2004) Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 31, 462–475.

    https://doi.org/10.1016/j.ympev.2003.09.003

    Duellman, W.E. & Trueb, L. (1986) Biology of amphibians. McGraw Hill, New York, 670 pp.

    Duellman, W.E. (1997) Amphibians of La Escalera region, southeastern Venezuela: taxonomy, ecology, and biogeography. Scientific Papers, Natural History Museum, The University of Kansas, 2, 1–52.

    https://doi.org/10.5962/bhl.title.16166

    Duellman, W.E. (2001) The Hylid Frogs of Middle America. Second edition. Society for the Study of Amphibians and Reptiles, Ithaca, New York, 1170 pp.

    Duellman, W.E., Marion, A.B. & Hedges, S.B. (2016) Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). Zootaxa, 4104 (1), 1–109.

    https://doi.org/10.11646/zootaxa.4104.1.1

    Edgar, R. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleid Acids Research, 32, 1792–1797.

    https://doi.org/10.1093/nar/gkh340

    Ersts, P.J. (2016) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Available from: http://biodiversityinformatics.amnB.org/open_source/gdmg. (accessed 24 October 2016)

    Escalona, M., Prieto-Torres, D. & Rojas-Runjaic, F.J. (2017) Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List, 13, 671–681.

    https://doi.org/10.15560/13.5.671

    Faivovich, J., García, P.C., Ananias, F., Lanari, L., Basso, N.G. & Wheeler, W.C. (2004) A molecular perspective on the phylogeny of the Hyla pulchella species group (Anura, Hylidae). Molecular Phylogenetics and Evolution, 32, 938–950.

    https://doi.org/10.1016/j.ympev.2004.03.008

    Faivovich, J., Haddad, C.F.B., Garcia, P.C.D.A., Frost, D.R., Campbell, J.A. & Wheeler, W.C. (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: a phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, 294, 1–240.

    http://hdl.handle.net/2246/462

    Faivovich, J., McDiarmid, R.W. & Myers, C.W. (2013) Two new species of Myersiohyla (Anura: Hylidae) from Cerro de la Neblina, Venezuela, with comments on other species of the genus. American Museum Novitates, 3792, 1–63.

    https://doi.org/10.1206/3792.1

    Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    https://doi.org/10.2307/2408678

    Fišer, C., Robinson, C.T. & Malard, F. (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27, 613–635.

    https://doi.org/10.1111/mec.14486

    Fouquet, A., Courtois, E.A., Baudain, D., Lima, J.D., Souza, S.M., Noonan, B.P. & Rodrigues, M.T. (2015) The trans-riverine genetic structure of 28 Amazonian frog species is dependent on life history. Journal of Tropical Ecology, 31, 361–373. https://doi.org/10.1017/s0266467415000206

    Funk, W.C., Caminer, M. & Ron, S.R. (2011) High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279, 1806–1814.
    https://doi.org/10.1098/rspb.2011.1653

    Gascon, C., Malcolm, J.R., Patton, J.L., da Silva, M.N.F., Bogart, J.P., Lougheed, S.C., Peres, C.A., Neckel, S. & Boag, P.T. (2000) Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences, 97, 13672–13677.
    https://doi.org/10.1073/pnas.230136397

    Gols-Ripoll, A., Herrera, E.A. & Arrivillaga, J. (2015) Genetic structure of Tupinambis teguixin (Squamata: Teiidae), with emphasis on Venezuelan populations. Revista de Biología Tropical, 63, 1235–1249.
    https://doi.org/10.15517/rbt.v63i4.17962

    Gonzalez-Voyer, A. & Kolm, N. (2011) Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation. Journal of Evolutionary Biology, 24, 2378–2388.
    https://doi.org/10.1111/j.1420-9101.2011.02365.x

    Gorzula, S. & Senaris, J.C. “1998” (1999) Contributions to the herpetofauna of the Venezuelan Guayana I: A data base. Scientia Guianae, 8, 1–270.

    Guarnizo, C.E., Amézquita, A. & Bermingham, E. (2009) The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50, 84–92.

    https://doi.org/10.1016/j.ympev.2008.10.005

    Guarnizo, C.E, Paz, A., Muñoz-Ortiz, A., Flechas, S.V., Méndez-Narváez, J. & Crawford, A.J. (2015) DNA Barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PLoS ONE, 10, e0127312.

    https://doi.org/10.1371/journal.pone.0127312

    Gutiérrez, E.E. & Molinari, J. (2008) Morphometrics and taxonomy of bats of the genus Pteronotus (subgenus Phyllodia) in Venezuela. Journal of Mammalogy, 89, 292–305.

    https://doi.org/10.1644/06-mamm-a-452r.1

    Gutiérrez, E.E., Anderson, R.P., Voss, R.S., Ochoa-G, J., Aguilera, M. & Jansa, S.A. (2014) Phylogeography of Marmosa robinsoni: insights into the biogeography of dry forests in northern South America. Journal of Mammalogy, 95, 1175–1188.

    https://doi.org/10.1644/14-MAMM-A-069

    Haffer, J.R. (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.

    https://doi.org/10.1023/A:1018320925954

    Harvey, M.B. & Gutberlet Jr., R.L. (2000) A phylogenetic analysis of the tropidurine lizards (Squamata: Tropiduridae), including new characters of squamation and epidermal microstructure. Zoological Journal of the Linnean Society, 128, 189–233.

    https://doi.org/10.1111/j.1096-3642.2000.tb00161.x

    Hayes, F.E. & Sewlal, J.A.N. (2004) The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31, 1809–1818.

    https://doi.org/10.1111/j.1365-2699.2004.01139.x

    Hebert, P.D., Cywinska, A. & Ball, S.L. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313–321.
    https://doi.org/10.1098/rspb.2002.2218

    Höbel, G. (1999) Facultative nest construction in the gladiator frog Hyla rosenbergi (Anura: Hylidae). Copeia, 1999, 797–801.

    https://doi.org/10.2307/1447618

    Hothorn, T., Hornik, K. van de Wiel, M.A. & Zeileis, A. (2008) Implementing a class of permutation tests: the coin package. Journal of Statistical Software, 28, 1–23.

    https://doi.org/10.18637/jss.v028.i08

    Huber, O. & Oliveira-Miranda, M.A. (2010) Ambientes terrestres. In: Rodriguez, J.P., Rojas-Suárez, F. & Giraldo Hernández, D. (Eds.), Libro Rojo de los Ecosistemas Terrestres de Venezuela. Provita, Shell Venezuela, Lenovo, Caracas, pp. 29–89.

    Janzen, D.H. (1967) Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249.

    https://doi.org/10.1086/282487

    Kenny, J.S. (1969) The amphibia of Trinidad. Studies on the fauna of Curaçao and other Caribbean islands. Hague, 29, 1–62.

    Kluge, A.G. (1979) The gladiator frogs of Middle America and Colombia - A reevaluation of their systematics (Anura: Hylidae). Occasional Papers of the Museum of Zoology, University of Michigan, 688, 1–24.

    Köhler, J., Jansen, M., Rodríguez, A., Kok, P.J.R., Toledo, L.F., Emmrich, M., Glaw, F., Haddad, C.F.B., Rödel, M.-O. & Vences, M. (2017) The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa, 4251 (1), 1–124.
    https://doi.org/10.11646/zootaxa.4251.1.1

    Köhler, J., Koscinski, D., Padial, J.M., Chaparro, J.C., Handford, P., Lougheed, S.C. & De la Riva, I. (2010) Systematics of Andean gladiator frogs of the Hypsiboas pulchella species group (Anura, Hylidae). Zoologica Scripta, 39, 572–590.

    https://doi.org/10.1111/j.1463-6409.2010.00448.x

    La Marca, E. (1997) Origen y evolución geológica de la Cordillera de Mérida. Cuadernos de la Escuela de Geografía (Universidad de Los Andes, Mérida), segunda etapa, 1, 1–110.

    La Marca, E., Azevedo-Ramos, C., Silvano, D., Solís, F., Ibáñez, R., Jaramillo, C., Fuenmayor, Q. & Hardy, J. (2010a) Hypsiboas pugnax. The IUCN Red List of Threatened Species 2010: e.T55618A11340255.

    https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T55618A11340255.en

    La Marca, E., Rueda, J.V., Ardila-Robayo, M.C., Solís, F., Ibáñez, R., Jaramillo, C., Fuenmayor, Q. & Barrio, C.L. (2010b) Hypsiboas crepitans. The IUCN Red List of Threatened Species, 2010, e.T55457A11314699.

    https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T55457A11314699.en

    Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

    https://doi.org/10.1093/molbev/mss020

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

    https://doi.org/10.1093/molbev/msw260

    Lehr, E., Faivovich, J. & Jungfer, K.H. (2010) A new andean species of the Hypsiboas pulchella group: Adults, calls, and phylogenetic relationships. Herpetologica, 66, 296–307.

    https://doi.org/10.1655/09-026.1

    Lehtinen, R. (2014) Confirmation of the nest building in a population of the gladiator frog Hypsiboas crepitans (Anura, Hylidae) from the island of Tobago (West Indies). Herpetology Notes, 7, 227–229.

    Liaw, A. & Wiener, M. (2002) Classification and regression by randomForest. R News, 2, 18–22.

    Littlejohn, M.J. (2001) Patterns of differentiation in temporal properties of acoustic signals of anurans. In: Ryan, M.J. (Ed.), Anuran communication. Smithsonian Institution Press, Washington, pp. 102–120.

    Lynch, M. & Hill, W.G. (1986) Phenotypic evolution by neutral mutation. Evolution, 40, 915–935.

    https://doi.org/10.2307/2408753

    Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. The American Naturalist, 136 (6), 727–741.

    https://doi.org/10.1086/285128

    Lynch, J.D. & Suárez-Mayorga, A.M. (2001) The distributions of the gladiator frogs (Hyla boans group) in Colombia, with comments on size variation and sympatry. Caldasia, 23, 491–507.

    Metzger, G., Espindola, A., Waits, L.P. & Sullivan, J. (2015) Genetic structure across broad spatial and temporal scales: Rocky Mountain tailed frogs (Ascaphus montanus; Anura: Ascaphidae) in the inland temperate rainforest. Journal of Heredity, 106, 700–710.

    https://doi.org/10.1093/jhered/esv061

    Meyer, C.P. (2003) Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society, 79, 401–459.

    https://doi.org/10.1046/j.1095-8312.2003.00197.x

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 2010, 1–8. Available from: http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf (Accessed 23 May 2019)

    Moen, D.S., Irschick, D.J. & Wiens, J.J. (2013) Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proceedings of the Royal Society B: Biological Sciences, 280, 20132516.

    https://doi.org/10.1098/rspb.2013.2156

    Monsen, K.J. & Blouin, M.S. (2004) Extreme isolation by distance in a montane frog Rana cascadae. Conservation Genetics, 5, 827–835.

    https://doi.org/10.1007/s10592-004-1981-z

    Murphy, J.C., Jowers, M.J., Lehtinen, R.M., Charles, S.P., Colli, G.R., Peres, A.K., Hendry, C. & Pyron, R.A. (2016) Cryptic, sympatric diversity in tegu lizards of the Tupinambis teguixin group (Squamata, Sauria, Teiidae) and the description of three new species. PLoS ONE, 11, e0158542.

    https://doi.org/10.1371%2Fjournal.pone.0158542

    Nascimento, A.P.B., Almeida, A., Lantyer-Silva, A.S.F. & Zina, J. (2015) Biologia reprodutiva de Hypsiboas crepitans (Anura, Hylidae). Boletim do Museu de Biologia Mello Leitão, 37, 271–291.

    Nava, F. (2005) Estudio filogeográfico de las ranas plataneras (Anura: Hylidae), en la región occidental de Venezuela, a través de electroforesis de aloenzimas. Licentiate thesis. Departamento de Biología, Universidad de Los Andes, Mérida, 51 pp.

    Newman, R.A. & Squire, T. (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Molecular Ecology, 10, 1087–1100.

    https://doi.org/10.1046/j.1365-294x.2001.01255.x

    Noonan, B.P. & Wray, K.P. (2006) Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, 33, 1007–1020.

    https://doi.org/10.1111/j.1365-2699.2006.01483.x

    Nosil, P., Harmon, L.J. & Seehausen, O. (2009) Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution, 24, 145–156.

    https://doi.org/10.1016/j.tree.2008.10.011

    Orrico, V. G., Nunes, I., Mattedi, C., Fouquet, A., Lemos, A. W., Rivera-Correa, M., Lyra, M., Loebman, D., Pimenta, B., Caramaschi, U., Rodrigues, M.T. & Haddad, C.F.B. (2017) Integrative taxonomy supports the existence of two distinct species within Hypsiboas crepitans (Anura: Hylidae). Salamandra, 53, 99–113.

    Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7, 16.

    https://doi.org/10.1186/1742-9994-7-16

    Palumbi, S.R. (1996) Nucleic Acids II: The Polymerase Chain Reaction. In: Hillis, D.M., Moritz, C. & Mable, B.K. (Eds.), Molecular Systematics. Sinauer & Associates Inc., Massachusetts, pp. 205–247.

    Panhuis, T.M., Butlin, R., Zuk, M. & Tregenza, T. (2001) Sexual selection and speciation. Trends in Ecology and Evolution, 16, 364–371.

    https://doi.org/10.1016/S0169-5347(01)02160-7

    Paz, A., Ibañez, R., Lips, K.R. & Crawford, A.J. (2015) Testing the role of ecology and life history in structuring genetic variation across a landscape: A trait-based phylogeographic approach. Molecular Ecology, 24, 3723–3737.

    https://doi.org/10.1111/mec.13275

    Perdices, A., Bermingham, E., Montilla, A. & Doadrio, I. (2002) Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution, 25, 172–189.

    https://doi.org/10.1016/S1055-7903(02)00224-5

    Pérez, O., Hoyer, M., Hernández, J., Rodríguez, C., Márquez, V., Sué, N., Velandia, J. & Deiros, D. (2005) Alturas del pico Bolívar y otras cimas andinas venezolanas a partir de observaciones GPS. Interciencia, 30, 213–216.

    Pinheiro, P.D., Kok, P.J., Noonan, B.P., Means, D.B., Haddad, C.F. & Faivovich, J. (2019) A new genus of Cophomantini, with comments on the taxonomic status of Boana liliae (Anura: Hylidae). Zoological Journal of the Linnean Society, 185, 226–245.
    https://doi.org/10.1093/zoolinnean/zly030

    Pombal, J.P. & Haddad, C.F. (1993) Hyla luctuosa, a new treefrog from southeastern Brazil (Amphibia: Hylidae). Herpetologica, 49, 16–21.

    Pombal J.P. & Gordo, M. (2004) Anfíbios anuros da Juréia. In: Marques, O.A.V. & Duleba, W. (Eds.), Estação Ecológica Juréia-Itatins. Ambiente Físico, Flora e Fauna. Holos editora, Riberão Preto, pp. 243–56.

    Pyron, R.A. & Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.

    https://doi.org/10.1016/j.ympev.2011.06.012

    R Core Team. (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org/ (accessed 20 March 2019)

    Relyea, R.A. & Werner, E.E. (2000) Morphological plasticity in four larval anurans distributed along an environmental gradient. Copeia, 2000, 178–190.

    https://doi.org/10.1643/0045-8511(2000)2000[0178:mpifla]2.0.co;2

    Rodríguez, A., Börner, M., Pabijan, M., Gehara, M., Haddad, C.F. & Vences, M. (2015) Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evolutionary Ecology, 29, 765–785.

    https://doi.org/10.1007/s10682-015-9774-7

    Shen, X.X., Liang, D., Wen, J.Z. & Zhang, P. (2011) Multiple genome alignments facilitate development of NPCL markers: a case study of Tetrapod phylogeny focusing on the position of Turtles. Molecular Biology and Evolution, 28, 3237–3252.

    https://doi.org/10.1093/molbev/msr148

    Shen, X.X., Liang, D. & Zhang, P. (2012) The development of three long universal Nuclear Protein-Coding Locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS ONE, 7, e39256.

    https://doi.org/10.1371/journal.pone.0039256

    Silva, G. (2005) La cuenca del río Orinoco: visión hidrográfica y balance hídrico. Revista Geográfica Venezolana, 46, 75–108.

    Solari, S. & Martínez-Arias, V. (2014) Cambios recientes en la sistemática y taxonomía de murciélagos Neotropicales (Mammalia: Chiroptera). Therya, 5, 167–196.

    https://doi.org/10.12933/therya-14-180

    Streelman, J.T. & Danley, P.D. (2003) The stages of vertebrate evolutionary radiation. Trends in Ecology & Evolution, 18, 126–131.

    https://doi.org/10.1016/s0169-5347(02)00036-8

    Sueur, J., Aubin, T. & Simonis, C. (2008) Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.

    https://doi.org/10.1080/09524622.2008.9753600

    Sukumaran, J. & Holder, M. (2010) DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26, 1569–1571.

    https://doi.org/10.1093/bioinformatics/btq228

    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    https://doi.org/10.1093/molbev/msw054

    Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics, 27, 171–180.

    https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Vences, M., Thomas, M., Van der Meijden, A., Chiari, Y. & Vieites, D.R. (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2, 5.

    https://doi.org/10.1186/1742-9994-2-5

    Voss, R. (1991) An introduction to the Neotropical muroid rodent genus Zygodontomys. Bulletin of the American Museum of Natural History, 210, 1–113.

    Wakeley, J. (2009) Coalescent Theory. Roberts & Company Publishers, Greenwood Village, Colorado, xii + 326 pp.

    Wallace, A.R. (1852) On the monkeys of the Amazon. Proceedings of the Zoological Society of London, 20, 107–110.

    Wells, K.D. (1977) The social behaviour of anuran amphibians. Animal Behaviour, 25, 666–693.

    https://doi.org/10.1016/0003-3472(77)90118-x

    Werle, E., Schneider, C., Renner, M., Volker, M. & Fiehn, W. (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22, 4354–4355.
    https://doi.org/10.1093/nar/22.20.4354

    Wied-Neuwied, M.A.P. (1824) Abbildungen zur naturgeschichte brasiliens. Heft 8. Lyes-Industrie-Comptoir, Weimar, 91 pls.

    Wiens, J.J., Fetzner, J.W., Parkinson, C.L. & Reeder, T.W. (2005) Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology, 54, 778–807.

    https://doi.org/10.1080/10635150500234625

    Wiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A. & Reeder, T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American Naturalist, 168, 579–596.

    https://doi.org/10.2307/3873455

    Wiley, E.O. (1978) The evolutionary species concept reconsidered. Systematic Zoology, 27, 17–26.

    https://doi.org/10.2307/2412809

    Wollenberg, K.C., Vieites, D.R., Glaw, F. & Vences, M. (2011) Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evolutionary Biology, 11, 217.

    https://doi.org/10.1186/1471-2148-11-217

    Wright, S. (1943) Isolation by distance. Genetics, 28, 114–138.

    Wüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Da Graça Salomão, M. & Thorpe, R.S. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 1095–1108.

    https://doi.org/10.1111/j.1365-294x.2005.02471.x

    Zancolli, G., Rödel, M.O., Steffan-Dewenter, I. & Storfer, A. (2014) Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro. Molecular Ecology, 23, 4989–5002.

    https://doi.org/10.1111/mec.12921

    Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas, Austin, Texas, 115 pp.