Abstract
In this study, the complete mitochondrial DNA sequence of Parum colligata (Lepidoptera: Sphingidae: Smerinthinae) was sequenced firstly. The mitogenome is 15,288 bp in size, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and an A+T-rich region. In the mitogenome, Ile, Leu2, and Phe are the most frequently used codon families, while codons GCG, TGC, GGC, CTG, AGG, and ACG are absent. The A+T-rich region is 358 bp in length including a motif ‘ATAGA’, an 18 bp poly-T stretch, three copies of a 12 bp ‘TATATATATATA’, and a short poly-A element. The nucleotides sequence of A+T-rich region is closer to Sphinginae than Macroglossinae. Phylogenetic analyses, based on the PCGs by using Maximum Likelihood (ML) and Bayesian Inference (BI) methods, generated consistent results that Smerinthinae was clustered together with Sphinginae to be the sister groups rather than Macroglossinae.
References
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319.
https://doi.org/10.1016/j.ympev.2012.08.023
Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780.
https://doi.org/10.1093/nar/27.8.1767
Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59 (1), 95–117.
https://doi.org/10.1146/annurev-ento-011613-162007
Cameron, S.L. & Whiting, M.F. (2007) Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome, 50, 188–202.
https://doi.org/10.1139/g06-148
Cameron, S.L. & Whiting, M.F. (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408, 112–123.
https://doi.org/10.1016/j.gene.2007.10.023
Dai, L.S., Li, S., Yu, H.M., Wei, G.Q., Wang, L., Qian, C., Zhang, C.F., Li, J., Sun, Y., Zhao, Y., Zhu, B.J. & Liu, C.L. (2017a) Mitochondrial genome of the sweet potato hornworm, Agrius convolvuli (Lepidoptera: Sphingidae), and comparison with other Lepidoptera species. Genome, 60, 128–138.
https://doi.org/10.1139/gen-2016-0058
Dai, L.S., Zhou, X.D., Kausar, S., Abbas, M.N., Wu, L. & Zhou, H.L. (2017b) Mitochondrial genome of Diaphania indica (Saunders) (Lepidoptera: Pyraloidea) and implications for its phylogeny. International Journal of Biological Macromolecules, 108, 981–989.
https://doi.org/10.1016/j.ijbiomac.2017.11.011
Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007) The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology, 16, 239–252.
https://doi.org/10.1111/j.1365-2583.2006.00721.x
Kawahara, A.Y., Mignault, A.A., Regier, J.C., Kitching, I.J. & Mitter, C. (2009) Phylogeny and biogeography of Hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PloS ONE, 4 (5), e5719.
https://doi.org/10.1371/journal.pone.0005719
Kim, M.J., Choi, S.W. & Kim, I. (2013) Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae). Mitochondrial DNA, 24, 622–624.
https://doi.org/10.3109/19401736.2013.772155
Kim, M.J., Kim, J.S. & Kim, I. (2016) Complete mitochondrial genome of the hawkmoth Notonagemia analis scribae (Lepidoptera: Sphingidae). Mitochondrial DNA Part B, 1, 416–418.
https://doi.org/10.1080/23802359.2016.1176883
Kitching, I.J. & Cadiou, J.M. (2000) Hawkmoths of the world: annotated and illustrated revisionary checklist. Cornell University Press, Ithaca, pp. 1–226.
Koshkin, E.S. & Kostyunin, A.E. (2017) Paper-mulberry hawkmoth Parum colligata (Walker, 1856) (Lepidoptera, Sphingidae), a new species for the fauna of Russia. Far Eastern Entomologist, 344, 18–20.
https://doi.org/10.25221/fee.344.4
Lewis, D.L., Farr, C.L., Farquhar, A.L. & Kaguni, L.S. (1994) Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Molecular Biology & Evolution, 11 (3), 523–538.
https://doi.org/10.1093/oxfordjournals.molbev.a040132
Li, J., Lin, R.R., Zhang, Y.Y., Hu, K.J., Zhao, Y.Q., Li, Y., Huang, Z.R., Zhang, X., Geng, X.X. & Ding, J.H. (2018a) Characterization of the complete mitochondrial DNA of Theretra japonica and its phylogenetic position within the Sphingidae (Lepidoptera: Sphingidae). Zookeys, 754, 127–139.
https://doi.org/10.3897/zookeys.754.23404
Li, J., Zhang, Y.Y., Hu, K.J., Zhao, Y.Q., Lin, R.R., Li, Y., Huang, Z.R., Zhang, X., Geng, X.X. & Ding, J.H. (2018b) Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. International Journal of Biological Macromolecules, 113, 592–600.
https://doi.org/10.1016/j.ijbiomac.2018.02.159
Lowe, T.M. & Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.
https://doi.org/10.1093/nar/25.5.955
Lowe, T.M. & Chan. P.P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44, w54–57.
https://doi.org/10.1093/nar/gkw413
Ma, C., Yang, P.C., Jiang, F., Chapuis, M.P., Shall, Y., Sword, G.A. & Kang, L. (2012) Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology, 21, 4344–4358.
https://doi.org/10.1111/j.1365-294X.2012.05684.x
Moritz, C., Dowling, T.E. & Brown, W.M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology & Systematics, 18, 269–292.
https://doi.org/10.1146/annurev.es.18.110187.001413
Nakamura, M. (1976) An inference on the phylogeny of Sphingidae in relation to habits and the structures of their immature stages. Yugatô, 63, 19–28.
Nelson, L.A., Lambkin, C.L., Batterham, P., Wallman, J.F., Dowton, M., Whiting, M.F., Yeates, D.K. & Cameron, S.L. (2012) Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene, 511, 131–142.
https://doi.org/10.1016/j.gene.2012.09.103
Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., Mitter, C., Mutanen, M., Regier, J.C., Simonsen, T.J., Wahlberg, N., Yen, S.H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B.Å., Brown, J.W., Bucheli, S.R., Davis, D.R., Prins, J.D., Prins, W.D., Epstein, M.E., Gentili-Poole, P., Gielis, C., Hättenschwiler, P., Hausmann, A., Holloway, J.D., Kallies, A., Karsholt, O., Kawahara, A.Y., Koster, S.J.C., Kozlov, M.V., Lafontaine, J.D., Lamas, G., Landry, J.F., Lee, S., Nuss, M., Park, K.T., Penz, C., Rota, J., Schintlmeister, A., Schmidt, B.C., Sohn, J.C., Solis, M.A., Tarmann, G.M., Warren, A.D., Weller, S., Yakovlev, R.V., Zolotuhin, V.V. & Zwick, A. (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Eds.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148 (1), 212–221.
https://doi.org/10.11646/zootaxa.3148.1.41
Regier, J.C., Mitter, C., Friedlander, T.P. & Peigler, R.S. (2001) Phylogenetic relationships and evolution of hostplant use in Sphingidae (Lepidoptera): initial evidence from two nuclear genes. Molecular Phylogenetics and Evolution, 20, 311–316.
https://doi.org/10.1006/mpev.2001.0963
Shao, R., Dowton, M., Murrell, A. & Barker, S.C. (2003) Rates of gene rearrangements and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology & Evolution, 20, 1612–1619.
https://doi.org/10.1093/molbev/msg176
Sun, Y., Chen, C., Gao, J., Abbas, M.N., Kausar, S., Qian, C., Wang, L., Wei, G., Zhu, B.J. & Liu, C.L. (2017) Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. PLoS ONE, 12, e0178773.
https://doi.org/10.1371/journal.pone.0178773
Xin, Z.Z., Yu, L., Zhu, X.Y., Wang, Y., Zhang, H.B., Zhang, D.Z., Zhou, C.L., Tang, B.P. & Liu, Q.N. (2017) Mitochondrial genomes of two Bombycoidea insects and implications for their phylogeny. Scientific Reports, 7, 6544.
https://doi.org/10.1038/s41598-017-06930-5
Zhang, B.C. (1994) Index of economically important Lepidoptera. CAB International, Wallingford, Oxon, pp. 1–599.
Zhou, Z.J., Huang, Y. & Shi, F.M. (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50, 855–866.
https://doi.org/10.1139/G07-057
Zhu, H.F. & Wang, L.Y. (1997) Fauna Sinica: Insecta. Vol. 11. Lepidoptera, Sphingidae. Science Press, Beijing, pp. 1–359.