Abstract
The Javan Krait (Bungarus javanicus Kopstein, 1932) was described on the basis of a single specimen that had been discovered subsequent to its delivery of lethal bites to two sleeping people in a rice field hut. Until 1936, only two additional specimens were found in the vicinity of the type locality near Cirebon on the north coast of West Java province, Indonesia. The taxonomic status of B. javanicus has remained doubtful due to its great similarity to the common and widely distributed Malayan Krait (Bungarus candidus), from which it was distinguished only by its black (vs. black-andwhite banded) colouration. We rediscovered B. javanicus near its type locality in 1993 and obtained substantial series of black kraits in West and Central Java provinces in 1996 and 1998. We provide a detailed redescription of the type specimen and the two other specimens of B. javanicus available to Kopstein. We then use nucleotide sequences of the mitochondrial cytochrome b gene to estimate relationships among 27 black and black-and-white banded kraits from Java and Bali. In addition, we use exon-primed intron-crossing primers to analyze a sequence segment of the alpha-bungarotoxin (A31) gene from ten black and black-and-white banded kraits from these islands. Four mitochondrial haplotypes were identified which exhibited minimal sequence divergence and no correlation to colouration. In particular, both external phenotypes were found in the same genealogical lineage near Indramayu, where black kraits and black-and-white banded B. candidus occur in syntopy. Neither the nucleotide sequence of intron 2 nor partial exon 2 and 3 sequences of the alphabungarotoxin (A31) gene exhibited variation within the sample from Java and Bali. Intron 2 sequence divergence between the Javan kraits and the closely related Bungarus multicinctus is 1.1%. Morphological examination of specimens of B. javanicus and B. candidus from Java revealed no differences beyond colouration. The combined evidence identifies the locally strong populations of black kraits in Java as conspecific with local B. candidus. Their regional dichromatism includes two fundamentally different patterns for predator avoidance, and is interpreted as the result of increased genetic fixation of mutations in one or several instable genes (which can cause similar pattern abnormalities in various species of Bungarus), in the course of the colonization of the alluvial plains of northern Java. These plains are of very recent origin and likely offered selective pressures different from those in older parts of the island, rendering both black and black-and-white banded phenotypes successful in predator avoidance.
References
Andrén, C. & Nilson, G. (1981) Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biological Journal of the Linnean Society, 15, 235–246.
Bergman, R.A.M. (1962) Die Anatomie der Elapinae. Zeitschrift für wissenschaftliche Zoologie, 167, 291–337.
Blanchard, F.N. (1921) A revision of the King Snakes: genus Lampropeltis. Bulletin of the United States National Museum, 114, 1–260.
Boulenger, G.A. (1896) Catalogue of the snakes in the British Museum (Natural History). Vol. III. Containing the Colubridae (Opistoglyphae and Proteroglyphae), Amblycephalidae and Viperidae, Trustees of the British Museum, London, United Kingdom, 727 pp.
Brattstrom, B.H. (1955) The coral snake "mimic" problem and protective coloration. Evolution, 9, 217–219.
Camin, J.H. & Ehrlich, P.R. (1958) Natural selection in water snakes (Natrix sipedon L.) on islands in Lake Erie. Evolution, 12, 504–511.
Campbell, J.A. & Lamar, W.W. (2004) The venomous reptiles of the western hemisphere, vol. 1+2, Cornell University Press, Ithaca, New York, U.S.A, 870 pp.
Chang, C.C. (1999) Looking back on the discovery of alpha-bungarotoxin. Journal of Biomedical Science, 6, 368–375.
Chang, C.C. & Lee, C.-Y. (1963) Isolation of neurotoxins from the venom of Bungarus multicinctus and their mode of neuromuscular blocking action. Archives of International Pharmacodynamics and Therapeutics, 144, 241–257.
Chang, L.S., Lin, S.K., Huang, H.B. & Hsiao, M. (1999) Genetic organization of α-bungarotoxins from Bungarus multicinctus (Taiwan banded krait): evidence showing that the production of α-bungarotoxin isotoxins is not derived from edited mRNAs. Nucleic Acids Research, 27, 3970–3975.
Coomans de Ruiter, L. (1960) De indonesische "Welangs" (Bungarus) en de zogenaamde Koraalslangetjes (Maticora en Callophis). Lacerta, 18, 33–35.
Couper, P., Covacevich, J.A. & McDonald, K.R. (1996) A Bandy Bandy with a difference. Memoirs of the Queensland Museum, 39, 242.
David, P. & Ineich, I. (1999) Les serpents venimeux du monde: systématique et répartition. Dumerilia, 3, 1–499.
De Haas, C.P.J. (1941) Some notes on the biology of snakes and on their distribution in two districts of West Java. Treubia, 18, 327–375.
De Haas, C.P.J. (1950) Checklist of the snakes of the Indo-Australian archipelago (Reptilia, Ophidia). Treubia, 20, 511– 625.
De Queiroz, A., Lawson, R. & Lemos-Espinal, J.A. (2002) Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Molecular Phylogenetics and Evolution, 22, 315-329.
De Queiroz, K. (1998) The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard, D.J. & Berlocher, S.H. (eds.) Endless Forms: Species and Speciation. Oxford University Press, New York, New York, U.S.A., pp. 57-75.
De Queiroz, K. (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson, R.A. (ed.) Species: New Interdisciplinary Essays. Massachusetts Institute of Technology Press, Cambridge, Massachusetts, U.S.A., pp. 49-89.
De Rooij, N. (1917) The reptiles of the Indo-Australian archipelago. II. Ophidia, E.J. Brill, Leiden, The Netherlands, 334 pp.
Dowling, H.G. (1951) A proposed standard system of counting ventrals in snakes. British Journal of Herpetology, 1, 97- 99.
Garbutt, N. (1989) Spots, stripes and serpents. Herptile, 14, 83–91.
Gibson, R.A. & Falls, J.B. (1988) Melanism in the common garter snake: a Lake Erie phenomenon. In: Downhower, J.F. (ed.) The biogeography of the island region of western Lake Erie. Ohio State University Press, Columbus, Ohio, U.S.A., pp. 233–245.
Gloyd, H.K. (1938) A case of poisoning from the bite of a black coral snake. Herpetologica, 1, 121–125.
Golay, P. (1985) Checklist and keys to the terrestrial proteroglyphs of the world, Elapsoidea, Geneva, Switzerland, 91 pp.
Golay, P., Smith, H.M., Broadley, D.G., Dixon, J.R., McCarthy, C.J., Rage, J.-C., Schätti, B. & Toriba, M. (1993) Endoglyphs and other major venomous snakes of the world. A checklist, Azemiops Herpetological Data Center, Geneva, Switzerland, 478 pp.
Harding, K.A. & Welch, K.R.G. (1980) Venomous snakes of the world. A checklist, Pergamon Press, Oxford, United Kingdom, 188 pp.
Hodges, R. (1993) Snakes of Java with special reference to East Java province. British Herpetological Society Bulletin, 43, 15–32.
Jackson, J.F., Ingram, III, W. & Campbell, H.W. (1976) The dorsal pigmentation of snakes as an antipredator strategy: a multivariate approach. American Naturalist, 110, 1029–1053.
Keogh, J.S., Scott, I.A.W. & Hayes, C. (2005) Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution, 59, 226–233.
King, R.B. (1988) Polymorphic populations of the garter snake Thamnophis sirtalis near Lake Erie. Herpetologica, 44, 451–458.
Klauber, L.M. (1931) A statistical survey of the snakes of the southern border of California. Bulletin of the Zoological Society of San Diego, 8, 1–93.
Klauber, L.M. (1936) The California King Snake, a case of pattern dimorphism. Herpetologica, 1, 18–27.
Klemmer, K. (1963) Liste der rezenten Giftschlangen: Elapidae, Hydropheidae, Viperidae und Crotalidae. In: Die Giftschlangen der Erde. Elwert, Marburg, Germany, pp. 255–464.
Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X. & Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the U.S.A., 86, 6196–6200.
Kopstein, F. (1930) Die Giftschlangen Javas und ihre Bedeutung für den Menschen. Zeitschrift für Morphologie und Ökologie der Tiere, 19, 339–363.
Kopstein, F. (1932) Herpetologische Notizen V. Bungarus javanicus, eine neue Giftschlange von Java. Treubia, 14, 73– 77 + Pl. 2.
Kopstein, F. (1936) Herpetologische Notizen XV. Ueber Bungarus javanicus Kopst. Treubia, 15, 265–266.
Kopstein, F. (1938) Herpetologische Notizen XIX. Ueber Pigmentierungsanomalien bei malaiischen Reptilien. Treubia, 16, 361–364 + Pl. 1–4.
Kuch, U. (1991) Abnormal colouration in the Banded Krait, Bungarus fasciatus (Schneider, 1801). The Snake, 23, 25– 28.
Kuch, U. (1996) Erfolgreiche Terrarienhaltung eines Java-Kraits, Bungarus javanicus Kopstein, 1932. Elaphe (N.F.), 4, 10–12.
Kuch, U. & Schneyer, W. (1993) Erfahrungen mit der Terrarienhaltung von vier Arten nahrungsspezialisierter Giftnattern der Gattung Bungarus Daudin, 1803. Teil III: Bungarus fasciatus (Schneider, 1801). Sauria, 15, 27–37.
Kuch, U., Pfenninger, M. & Bahl, A. (1999) Laundry detergent effectively preserves amphibian and reptile blood and tissue for DNA isolation. Herpetological Review, 30, 80–82.
Kuch, U., Molles, B.E., Omori-Satoh, T., Chanhome, L., Samejima, Y. & Mebs, D. (2003) Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. Toxicon, 42, 381–390.
Kuch, U., Kizirian, D., Nguyen, Q.T., Lawson, R., Donnelly, M.A. & Mebs, D. (2005a) A new species of krait (Squamata: Elapidae) from the Red River system of northern Vietnam. Copeia, 2005, 818–833.
Kuch, U., Keogh, J.S., Weigel, J., Smith, L.A. & Mebs, D. (2005 b) Phylogeography of Australia's king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator. Naturwissenschaften, 92, 121–127.
Kumar S., Tamura K., Jakobsen I.B. & Nei, M. (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona, U.S.A.
Kuntz, R.E. (1963) Snakes of Taiwan. Quarterly Journal of the Taiwan Museum, 16, 1–79.
Leviton, A.E. (1968) The venomous terrestrial snakes of East Asia, India, Malaya, and Indonesia. In: Bücherl, W., Buckley, E.E. & Deulofeu, V. (eds.) Venomous animals and their venoms, vol. I. Academic Press, New York City, New York, U.S.A., pp. 529–576.
Lukoschek, V. & Keogh, J.S. (2006) Molecular phylogeny of sea snakes reveals a rapidly diverged adaptive radiation. Biological Journal of the Linnean Society, 89, 523–539.
Mao, S.-H. (1961) Color variations of Taiwan (Formosa) many-banded krait. Herpetologica, 26, 45–48.
Mao, S.-H. & Chen, B.Y. (1974) A third color variety of Taiwan many-banded krait. The Snake, 6, 52–53.
Mebs, D., Narita, K., Iwanaga, S., Samejima, Y. & Lee, C.Y. (1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 353, 243–262.
Merilaita, S. & Lind, J. (2005) Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society B, 272, 665–670.
Mertens, R. (1947) Studien zur Eidonomie und Taxonomie der Ringelnatter. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft, 476, 1–38.
Nirthanan, S. & Gwee, M.C.E. (2004) Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of Pharmaceutical Sciences, 94, 1–17.
Pough, F.H. (1976) Multiple cryptic effects of crossbanded and ringed patterns of snakes. Copeia, 1976, 834–836.
Schiemenz, H. (1985) Die Kreuzotter, A. Ziemsen Verlag, Wittenberg, Germany, 108 pp.
Slowinski, J.B. (1994) A phylogenetic analysis of Bungarus (Elapidae) based on morphological characters. Journal of Herpetology, 28, 440–446.
Smith, M.A. (1943) The fauna of British India, Ceylon and Burma, including the whole of the Indo-Chinese sub-region. Reptilia and Amphibia, vol. III., Serpentes, Trustees of the British Museum, London, United Kingdom, 583 pp.
Swofford, D.L. (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), Sinauer Associates, Sunderland, Massachusetts, U.S.A.
Taylor, E.H. (1965) The serpents of Thailand and adjacent waters. University of Kansas Science Bulletin, 45, 609–1096.
Tillack, F. & Grossmann, W. (1998) Erstnachweis eines schwarzen Kraits (Gattung Bungarus Daudin, 1803) auf Bali, Indonesien (Reptilia: Serpentes: Elapidae). Sauria, 20(3), 11–14.
Tjia, H.D. (1980) The Sunda shelf, Southeast Asia. Zeitschrift für Geomorphologie, 24, 405–427.
Tjia, H.D. (1984) Holocene shorelines in the Indonesian Tin Island. Modern Quaternary Research in Southeast Asia, 8, 103–117.
Unruh, M. (1998) Beobachtung einer schwarzen Ringelnatter Natrix natrix. Natur und Museum, 128, 247–254.
USA Navy Department, Office of Naval Intelligence (1962) Poisonous snakes of the world. A manual for use by U.S. amphibious forces, United States Government Printing Office, Washington, D.C., U.S.A, 212 pp.
Van Denburgh, J. (1922) The reptiles of western North America. Vol. 1, Lizards; Vol. 2, Snakes and Turtles. Occasional Papers of the California Academy of Sciences, 10, 1–1028.
Völkl, W. & Thiesmeier, B. (2002) Die Kreuzotter: ein Leben in festen Bahnen? Laurenti Verlag, Bielefeld, Germany, 159 pp.
Werler, J.E. & Keegan, H.L. (1963) Venomous snakes of the Pacific area. In: Keegan, H.L. & MacFarlane, W.V. (eds.) Venomous and poisonous animals and noxious plants of the Pacific region. Pergamon Press, London, United King dom, pp. 225–295.
Whitaker, R. (1968) Abnormal colouration in the banded krait, Bungarus fasciatus (Schneider). Journal of the Bombay natural History Society, 66, 184–185.
Whitten, T., Soeriaatmadja, R.E. & Afiff, S.A. (1996) The ecology of Java and Bali, Periplus, Singapore, 969 pp.
Zhang, D.X. & Hewitt, G.M. (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology and Evolution, 11, 247–251.