Abstract
In the present paper, we describe Juliomys ossitenuis, a new species of sigmodontine rodent from the Altantic forest biodiversity hotspot in South America. This new species can be distinguished from the two congeners by clear morphological, molecular, and karyological characters. Juliomys ossitenuis is known from rain and semi-deciduous forests above 800 meters of altitude in southeastern Brazil, ranging from the state of Espírito Santo to São Paulo. Molecular phylogenetic analyses based on the mitochondrial cytochrome b gene confirmed that members of this new species form a well-supported monophyletic group, highly divergent from the other two species in the genus.References
Bonvicino, C.R., Otazu, I.B. (1999) The Wilfredomys pictipes (Rodentia: Sigmodontinae) karyotype with comments on the karyosystematics of the Brazilian thomasomyine. Acta Theriologica, 44, 329–332.
Carleton, M.D. (1980) Phylogenetic relationships in Neotomine-Permoyscine rodents (Muroidea) and a reappraisal of the dichotomy within New World Cricetinae. Miscellaneous Publications, Museum of Zoology, University of Michigan, 157, 1–146.
Carleton, M.D. & Musser, G.G. (1989) Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bulletin of the American Museum of Natural History, 191, 1–83.
D’Elía, G. (2003) Phylogenetics of Sigmodontinae (Rodentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments on historical biogeography. Cladistics, 19, 307–323.
D’Elía, G., Luna, L., González, E.M. & Patterson, B.D. (2006) On the Sigmodontinae radiation (Rodentia, Cricetidae): An appraisal of the phylogenetic position of Rhagomys. Molecular Phylogenetics and Evolution, 38, 558–564.
Douady, D.J., Delsuc, F., Boucher, Y., Doolittle, W.F., Douzery, E.J.P. (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution, 20, 248–254.
Emmons, L.H. & Patton, J.L. (2005) A New Species of Oryzomys (Rodentia: Muridae) from Eastern Bolivia. American Museum Novitates, 3478, 1–26.
Fagundes V., Scalzi-Martin, J.M., Sims, K., Hozier, J. & Yonenaga-Yassuda, Y. (1997) ZOO-FISH of a microdissection DNA library and G-banding patterns reveal the homeology between the Brazilian rodents Akodon cursor and Akodon montensis. Cytogenetics and Cell Genetics, 78, 224–228.
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.
Gardner, S.L. & Anderson, S. (2001) Persistent fontanelles in rodent skulls. American Museum Novitates, 3327, 1–15.
González, E.M. (2000) Un nuevo género de roedor sigmodontino de Argentina y Brasil (Mammalia: Rodentia: Sigmodontinae). Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo, 12, 1–12.
Huelsenbeck, J.P., Larget, B., Miller, R.E. & Ronquist, F. (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology, 51, 673–688.
Kimura, M. (1980) A single method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
Morellato, L.P.C. & Haddad, C.F.B. (2000) Introduction: the Brazilian Atlantic forest. Biotropica, 32, 786–792.
Musser, G.G. & Carleton, M.D. (2005) Superfamily Muroidea. In: Wilson, D.E. & Reeder, D.A. (Ed.), Mammal Species of the World: a Taxonomic and Geographic Reference. 3rd edition, vol. 2. The Johns Hopkins University Press, Baltimore, 894–1531.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
Oliveira, J.A. & Bonvicino, C.R. (2002) A new species of sigmodontine rodent from the Atlantic forest of eastern Brazil. Acta Theriologica, 47, 307–322.
Osgood, W.H. (1933) Two new rodents from Argentina. Zoological Series of Field Museum of Natural History, 20, 11–14.
Pacheco, V. (2003) Phylogenetic analyses of the Thomasomyini (Muroidea: Sigmodontinae) based on morphological data. Ph.D. dissertation, The City University of New York, New York.
Pardini, R., Souza, S.M., Braga-Neto, R., Metzger, J.P. (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological Conservation, 124, 253–266.
Percequillo, A.R., Gonçalves, P.E. & Oliveira, J.A. (2004) The rediscovery of Rhagomys rufescens (Thomas, 1886), with a morphological redescription and comments on its systematic relationships based on morphological and molecular (cytochrome b) characters. Mammalian Biology, 69, 238–257.
Piontkivska, H. (2004) Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used. Molecular Phylogenetics and Evolution, 31, 865–873.
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.
Rivas, L.S. (1964) A reinterpretation of the concepts “Sympatric” and “Allopatric”with proposal of the additional terms “Syntopic” and “Allotopic”. Systematic Zoology, 13, 42–43.
Rodríguez, F., Oliver, J.F., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501.
Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference using mixed models. Bioinformatics, 19, 1572–1574.
Ronquist, F., Huelsenbeck, J.P., van der Mark, P. (2005) MrBayes 3.1 Manual. Available from http://mrbayes.csit.fsu.edu/wiki/index.php/Manual (accessed 5 march 2007)
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. & Erlich, H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.
Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.
Smith, M.F. & Patton, J.L. (1999) Phylogenetic relationships and the radiation of sigmodontine rodents in South America: evidence from cytochrome b. Journal of Mammalian Evolution, 6, 89–128.
Swofford, D.L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland.
Thomas, O. (1928) A new Thomasomys from Rio Grande do Sul. Annals and Magazine of Natural History, Series 10, 1, 154–155.
Tribe, C.J. (1996) The Neotropical rodent genus Rhipidomys (Cricetidae: Sigmodontinae)–a taxonomic revision. Ph.D. Dissertation. University College, London, 1–316.
Umetsu, F., Naxara, L. & Pardini, R. (2006) Evaluating the efficiency of pitfall traps for sampling small mammals in the Neotropics. Journal of Mammalogy, 87, 757–765.
Voss, R.S. (1988) Systematics and ecology of ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bulletin of the American Museum of Natural History, 188, 259–493.
Voss, R.S. (1993) A revision of the Brazilian muroid rodent genus Delomys with remarks on "Thomasomyine" characters. American Museum Novitates, 3073, 1–44.
Walsh, P.S., Metzger, D.A. & Higuchi, R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10, 506–513.
Weksler, M. (2003) Phylogeny of Neotropical oryzomyine rodents (Muridae: Sigmodontinae) based on the nuclear IRBP exon. Molecular Phylogenetics and Evolution, 29, 331–349.
Weksler, M. (2006) Phylogenetic relationships of oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bulletin of the American Museum of Natural History, 296, 1–149.
Weksler, M. & Bonvicino, C.R. (2005) Taxonomy of pigmy rice rats genus Oligoryzomys Bangs, 1900 (Rodentia, Sigmodontinae) of the Brazilian Cerrado, with the description of two new species. Arquivos do Museu Nacional, Rio de Janeiro, 63, 113–130.
Yonenaga Y., Kasahara, S., Almeida, E.J.C. & Peracchi, A.L. (1975) Chromosomal banding patterns in Akodon arviculoides (2n=14), Akodon sp. (2n=24, 25), and two male hybrids with 19 chromosomes. Cytogenetics and Cell Genetics, 15, 388–399.