Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-09-12
Page range: 475–488
Abstract views: 238
PDF downloaded: 116

Genomic analysis of the tribe Emesidini (Lepidoptera: Riodinidae)

Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Institute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050
Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Institute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050
Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Institute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050 present address: Institute for Protein Design and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, HSB J-405, Seattle, WA, USA 98195
Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Institute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050
Lepidoptera biodiversity genomic sequencing museomics phylogeny metalmark butterflies

Abstract

We obtained and phylogenetically analyzed whole genome shotgun sequences of nearly all species from the tribe Emesidini Seraphim, Freitas & Kaminski, 2018 (Riodinidae) and representatives from other Riodinidae tribes. We see that the recently proposed genera Neoapodemia Trujano, 2018 and Plesioarida Trujano & García, 2018 are closely allied with Apodemia C. & R. Felder, [1865] and are better viewed as its subgenera, new status. Overall, Emesis Fabricius, 1807 and Apodemia (even after inclusion of the two subgenera) are so phylogenetically close that several species have been previously swapped between these two genera. New combinations are: Apodemia (Neoapodemia) zela (Butler, 1870), Apodemia (Neoapodemia) ares (Edwards, 1882), and Apodemia (Neoapodemia) arnacis (Stichel, 1928) (not Emesis); and Emesis phyciodoides (Barnes & Benjamin, 1924) (not Apodemia), assigned to each genus by their monophyly in genomic trees with the type species (TS) of the genus. Surprisingly, we find that Emesis emesia Hewitson, 1867 is not grouped with Emesis, but in addition to Apodemia forms a third lineage of similar rank, here named Curvie Grishin, gen. n. (TS: Symmachia emesia Hewitson, 1867). Furthermore, we partition Emesis into 6 subgenera (4 new): Emesis (TS: Hesperia ovidius Fabricius, 1793, a subjective junior synonym of Papilio cereus Linnaeus, 1767), Aphacitis Hübner, [1819] (TS: Papilio dyndima Cramer, [1780], a subjective junior synonym of Papilio lucinda Cramer, [1775]), Poeasia Grishin, subgen. n. (TS: Emesis poeas Godman, [1901]), Mandania Grishin, subgen. n. (TS: Papilio mandana Cramer, [1780]), Brimia Grishin, subgen. n. (TS: Emesis brimo Godman & Salvin, 1889), and Tenedia Grishin, subgen. n. (TS: Emesis tenedia C. & R. Felder, 1861). Next, genomic comparison of primary type specimens suggests new status for Emesis vimena Schaus, 1928 as a subspecies of Emesis brimo Godman & Salvin, 1889, Emesis adelpha Le Cerf, 1958 with E. a. vicaria Le Cerf, 1958 are subspecies of Emesis heteroclita Stichel, 1929, and Emesis tristis Stichel, 1929 is not a synonym of E. brimo vimena but of Emesis lupina Godman & Salvin, 1886. A new status of a species is given to the following taxa: Emesis furor A. Butler & H. Druce, 1872 (not a subspecies of E. mandana (Cramer, 1780)), Emesis melancholica Stichel, 1916 (not a subspecies of E. lupina Godman & Salvin, 1886), Emesis progne (Godman, 1903) (not a subspecies of E. brimo Godman & Salvin, 1889), and Emesis opaca Stichel, 1910 (not a synonym of E. lucinda (Cramer, 1775)). Emesis castigata diringeri Gallard 2008 is a subjective junior synonym of E. opaca, new status. Finally, Xanthosa Grishin, gen. n. (TS: Charmona xanthosa Stichel, 1910) is proposed for a sister lineage of Sertania Callaghan & Kaminski, 2017 and Befrostia Grishin, gen. n. (TS: Emesis elegia Stichel, 1929) is proposed for a clade without apparent phylogenetic affinities that we place in Befrostiini Grishin, trib. n. In conclusion, genomic data reveal a number of errors in the current classification of Emesidini and allow us to confidently reclassify the tribe partitioning it in three genera: Apodemia, Curvie gen. n. and Emesis.

 

References

  1. Bates, H.W. (1868) A catalogue of Erycinidæ, a family of diurnal Lepidoptera. Zoological Journal of the Linnean Society, 9, 373–436.

    https://doi.org/10.1111/j.1096-3642.1868.tb01224.x

    Buchfink, B., Xie, C. & Huson, D.H. (2015) Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12, 59–60.

    https://doi.org/10.1038/nmeth.3176

    Callaghan, C.J. & Lamas, G. (2004) Riodinidae. In: Lamas, G. (Ed.), Checklist: Part 4A. Hesperioidea—Papilionoidea. Association for Tropical Lepidoptera, Scientific Publishers, Gainesville, pp. 141–170.

    Casanova, E.L., Gerstner, Z., Sharp, J.L., Casanova, M.F. & Feltus, F.A. (2018) Widespread Genotype-Phenotype Correlations in Intellectual Disability. Frontiers in Psychiatry, 9, 535.

    https://doi.org/10.3389/fpsyt.2018.00535

    Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N.V. (2015) Tiger Swallowtail Genome Reveals Mechanisms for Speciation and Caterpillar Chemical Defense. Cell Reports, 10, 910–919.

    https://doi.org/10.1016/j.celrep.2015.01.026

    Cong, Q., Shen, J., Li, W., Borek, D., Otwinowski, Z. & Grishin, N.V. (2017) The first complete genomes of Metalmarks and the classification of butterfly families. Genomics, 109, 485–493.

    https://doi.org/10.1016/j.ygeno.2017.07.006

    Costanzo, M., Kuzmin, E., van Leeuwen, J., Mair, B., Moffat, J., Boone, C. & Andrews, B. (2019) Global Genetic Networks and the Genotype-to-Phenotype Relationship. Cell, 177, 85–100.

    https://doi.org/10.1016/j.cell.2019.01.033

    Espeland, M., Hall, J.P., DeVries, P.J., Lees, D.C., Cornwall, M., Hsu, Y.F., Wu, L.W., Campbell, D.L., Talavera, G., Vila, R., Salzman, S., Ruehr, S., Lohman, D.J. & Pierce, N.E. (2015) Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 93, 296–306.

    https://doi.org/10.1016/j.ympev.2015.08.006

    Fraisse, C., Picard, M.A.L. & Vicoso, B. (2017) The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nature Communications, 8, 1486.

    https://doi.org/10.1038/s41467-017-01663-5

    Gallard, J.-Y. (2008) Rodinidae de Guyana Française Trois especes et trois sous-especes nouvelles (Lepidoptera). Lambillionea, 108, 441–454.

    Grishin, N.V. (2019) Expanded phenotypic diagnoses for 24 recently named new taxa of Hesperiidae (Lepidoptera). The Taxonomic Report of the International Lepidoptera Survey, 8, 1–15.

    Harvey, D.J. (1987) The higher classification of the Riodinidae (Lepidoptera). PhD Thesis, University of Texas, Austin, vii + 216 pp.

    Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 487, 94–98.

    https://doi.org/10.1038/nature11041

    ICZN [International Commission on Zoological Nomenclature] (1999) International Code of Zoological Nomenclature, Fourth Edition, adopted by the International Union of Biological Sciences. The International Trust for Zoological Nomenclature, c/o The Natural History Museum, London, 306 pp.

    Kaminski, L.A., Callaghan, C.J., Seraphim, N., Magaldi, L.M., Volkmann, L. & Freitas, A.V.L. (2017) Sertania gen. nov., a new genus of butterflies (Lepidoptera: Riodinidae) from the South American dry diagonal. Zootaxa, 4312 (1), 165–179.

    https://doi.org/10.11646/zootaxa.4312.1.8

    Kozlov, A., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. [published online]

    https://doi.org/10.1093/bioinformatics/btz305

    Li, W., Cong, Q., Shen, J., Zhang, J., Hallwachs, W., Janzen, D.H. & Grishin, N.V. (2019) Genomes of skipper butterflies reveal extensive convergence of wing patterns. Proceedings of the National Academy of Sciences of the United States of America, 116, 6232–6237.

    https://doi.org/10.1073/pnas.1821304116

    Ratnasingham, S. & Hebert, P.D. (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.

    https://doi.org/10.1111/j.1471-8286.2007.01678.x

    Seraphim, N., Kaminski, L.A., Devries, P.J., Penz, C., Callaghan, C., Wahlberg, N., Silva-Brandão, K.L. & Freitas, A.V.L. (2018) Molecular phylogeny and higher systematics of the metalmark butterflies (Lepidoptera: Riodinidae). Systematic Entomology, 43, 407–425.

    https://doi.org/10.1111/syen.12282

    Shen, J., Cong, Q. & Grishin, N.V. (2015) The complete mitochondrial genome of Papilio glaucus and its phylogenetic implications. Meta Gene, 5, 68–83.

    https://doi.org/10.1016/j.mgene.2015.05.002

    Stichel, H. (1910-1911) Fam. Riodinidae. Allgemeines. Subfam. Riodininae. Vol. 112. In: Wytsman, J. (Ed.), Genera Insectorum. Desmet-Verteneuil, Brussels, pp. 1–452.

    Stichel, H. (1928) Nemeobiini. Das Tierreich, 51, 1–330.

    Stichel, H. (1930–1931) Riodinidae. Lepidopterorum catalogus. Vol. 26. Pars. 38, 40, 41, 44. W. Junk, Berlin, [2] + 796 pp.

    Talavera, G., Lukhtanov, V.A., Pierce, N.E. & Vila, R. (2012) Establishing criteria for higher-level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics, 29, 166–192.

    https://doi.org/10.1111/j.1096-0031.2012.00421.x

    Trujano-Ortega, M., Garcia-Vazquez, U.O., Callaghan, C.J., Avalos-Hernandez, O., Luis-Martinez, M.A. & Llorente-Bousquets, J.E. (2018) Two new genera of metalmark butterflies of North and Central America (Lepidoptera, Riodinidae). Zookeys, 729, 61–85.

    https://doi.org/10.3897/zookeys.729.20179

    Zhang, J., Cong, Q., Shen, J., Brockmann, E. & Grishin, N.V. (2019) Genomes reveal drastic and recurrent phenotypic divergence in firetip skipper butterflies (Hesperiidae: Pyrrhopyginae). Proceedings of the Royal Society B: Biological Sciences, 286, 20190609.

    https://doi.org/10.1098/rspb.2019.0609